

Latest news in genetic and isotopes

Thierry THIBAUT

Baptiste LE BOURG, Frédéric MENARD, Thomas CHANGEUX, Valérie STIGER-PROUVEAU, Solène CONAN, Aurélie BLANFUNE, Sandrine RUITTON, Léo BERLINE, François LE LOCH, BOUDOURESQUE Charles-François, Marc VERLAQUE, Didier AURELLE, Amy SUIDA, Jeffrey SCHELL, Deb GOODWIN, Skye DIBNER, Frédéric VIARD, Florence ROUSSEAU, Line LE GALL, Cristèle CHEVALIER, Jean BLANCHOT

1.Identification Lastest news 3 morphotypes found in all the North Atlantic Ocean and since 2011 they form the Great Atlantic Sargassum Belt

Sargassum fluitans III

Sargassum natans I

Sargassum natans VIII

Sample collection

- 264 Holopelagic Sargassum specimens were collected
- in 2017 +135 Sargassum samples collected from 2015
- to 2019 by Sea Education Association (SEA) for genetic
- analysis. All vouchers are kept at SEA and MIO

Morphological analysis

- **264 individuals analysed** ; **20 characters** observed and measured. nMDS and Permanova was performed.
- We used S17 Bray-Curtis similarity distance.

Phylogenetic analysis

3 mitochondrial markers (cox3, mt16S rRNA gene and nad6 gene) were used to examine genetic difference among the 3 morphotypes (for more details see Dibner *et al.*, 2022)

Table 1. Permutation multivariate analysis of variance (PERMANOVA) and Pair-Wise test, based on the morphological characters of pelagic specimens of *Sargassum* collected during the two 2017 campaigns (after a square root transformation of the data, and using S17 Bray Curtis similarity).

Source	df	SS	MS	Pseudo-F	P(perm)	Unique perms
Morphotype	2	77756	38878	175.73	0.001	998
Residual	252	55752	221.24			
Total	254	1.3351E5				

Groups	t	P(perm)	Unique perms	P(MC)
S. natans VIII, S. natans I	14.306	0.001	999	0.001
S. natans VIII, S. fluitans, III	10.59	0.001	999	0.001
S. natans I, S. fluitans, III	14.93	0.001	999	0.001

Usually same morphology and genetic difference = cryptic species

Here the contrary ! Probably due to the clonal aspect = plasticity but not "à mémoire de forme"

2. What is the influence of the morphotype and the location on the C and N isotopic ratio in the pelagic Sargassum?

Sampling campaigns

10th June-11th July 2017

13 locations sampled3 specimens/morphotype

22nd September – 20th **b** October 2017

7 locations sampled3 specimens/morphotype

181 samples were freeze-dried and then ground

- \Rightarrow For each sample, a sub-sample (~2 mg) was encapsulated in a tin capsule
- ⇒ analyzed with an elemental analyzer (Flash EA 2000, Thermo Scientific, Milan, Italy) coupled to a mass spectrometer (Delta V+ with a conflo IV interface, Thermo Scientific, Bremen, Germany) at the Ocean Spectrometry Center (Plouzané, France)

 $\delta^{15}N$

Sargassum natans VIII

Sargassum natans I

Latitude

Morphotype:Latitude

Sargassum fluitans III

1,118

2,118

0.670

0.112

0.415

0.894

Neither the latitude nor the morphotype influence $\delta^{15}N$

 $\delta^{15}N$

Sargassum natans VIII

Sargassum natans I

Sargassum fluitans III

Influence of the longitude on $\delta^{15}N$

Decrease of $\delta^{15}N$ from East to West

No influence of the morphotype

	df	F	Р
Morphotype	2,51	2.635	0.081
Longitude	1,51	91.572	< 0.001
Morphotype:Longitude	2,51	0.960	0.390

δ¹³C

Sargassum natans VIII Sargassum natans I

Sargassum fluitans III

Influence of the latitude and the morphotype on $\delta^{13}\text{C}$

 δ^{13} C is lower within *S. fluitans* III than in both *S. natans*

Maximum at 16 °C near the lesser Antillas

δ¹³C

Sargassum natans VIII Sargassum natans I

Sargassum fluitans III

Neither the latitude nor the morphotype influence $\delta^{13}C$

δ¹³C

- $\delta^{13}C$ in aquatic plants may be related to the carbon source used for photosynthesis

- $\delta^{13}C < -30$ ‰ exclusively use CO_2 which is low in C_{13} ($\delta^{13}C = -7.8$ ‰)
- $\delta^{13}C > -10$ ‰ exclusively use HCO_3^- ions enriched in C_{13} ($\delta^{13}C = 0$ ‰)
- -30 ‰ < δ^{13} C< –10 ‰ could use both CO₂ & HCO₃⁻

(Raven et al., 2022)

-21 ‰ < δ^{13} C< -11 ‰ in holopelagic Sargassum ⇒Switch in C source

⇒High δ^{13} C values may indicate an higher use of HCO_3^- ⇒ depletion of CO_2 in the algal boundary layer when strong growth (higher around the Caribbean, and lower offshore)

\Rightarrow water movement, within raft CO₂ is rapidly depleted

$\delta^{15}N$

 δ^{15} N in aquatic plants is related to the source of nitrogen

- positive $\delta^{15}N$ N from up-welling, coastal origin
- negative $\delta^{15}N$ N from animal excretion
- very negative $\delta^{15}N N_2$ fixed from diazotrophy (Montoya *et al.*, 2008)

-4 ‰ < $\delta^{15}N$ <0.5‰ in holopelagic Sargassum

- ⇒Dominance of diazotrophy (cf. Matéo's talk)
- but also uptake of N
- \Rightarrow from the associated fauna
- \Rightarrow from up-welling
- ⇒from coastal water run-off

\Rightarrow N is never a factor of limitation