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Context: Why do we care about phytoplankton ?

Support the oceanic foodweb

o Impact on the upper trophic levels




Context: Why do we care about phytoplankton ?

Support the oceanic foodweb

o Impact on the upper trophic levels

Key role in the global carbon cycle

o Sequestration of 2/3 of antropogenic Carbon
(biological carbon pump; Takahashi et al., 2009)

o Production % of O2 on earth




Context: how can we study phytoplankton ?

Satellite observations In situ observations
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1) satellite obs

Context: limitations to assess Chl low frequency variability and trends

Radiometric satellite era
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Context: limitations to assess Chl low frequency variability and trends
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scientific |0Ck 1: * Too short satellite obs. time-series



Context: limitations to assess Chl low frequency variability and trends 1) satellite obs

Radiometric satellite era

»
»

1997 now

/\/\/ Seasonal cycle

MMI\A Interannual cycle

/ Lack of synoptic observations \

Decadal cycle ?

Natural oscillations

Antropogenic trend

scientific |0Ck 1: Too short satellite obs. time-series

Identify the natural oscillations vs. anthropic trend

Aim 1:

Understand the underlying BGC-physical processes

Proof of concept with machine learning Martinez et al., 2020a; 2022; Roussillon et al. (2023)



Context: limitations to assess Chl low frequency variability and trends 2) in situ obs

n) North Sea
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Continuous Plankton Recorder (CPR) since 1960

scientific lock 2: ° Difficulty in parameterizing biology in BGC models
(i.e., multi-decadal and regime shifts)



2) in situ obs

Context: limitations to assess Chl low frequency variability and trends

0.6 Y Y T T '
n) North Sea : : :
0 ,\J NW 7. \I\W ‘:_1 | — ’ 0
0.6 - ; -0.03
19 1960 19 1990 2000

TOPAZ model chl, mg m_s_ —
Henson et al. (2009)

CPR chl, mg m .

Continuous Plankton Recorder (CPR) since 1960

* Difficulty in parameterizing biology in BGC models

scientific lock 2:
(i.e., multi-decadal and regime shifts)

Better understand biotic and abiotic interactions on
the phyto- & zoo plankton biomass and communities

Aim 2: ’
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: limitations to assess Chl low frequency variability and trends 3) CMIP projection

(e)
Earth System Model (ESM)
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Global mean projections of depth-integrated net primary production (%)
(from Kwiatkowski et al., 2020)
scientific lock 3: e Wide cone of uncertainty on climate projections
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: limitations to assess Chl low frequency variability and trends 3) CMIP projection

(e)
Earth System Model (ESM)

=

B Ocean/atmos.
5 models

-15 'Y L I
1900 1950 2000 2050 2100
Global mean projections of depth-integrated net primary production (%)
(from Kwiatkowski et al., 2020)
scientific lock 3: e Wide cone of uncertainty on climate projections

e Quantification of ESM’s uncertainty related to physical
Aim 3: forcing & to biogeochemical model formulation

* |dentification of physical processes
12



Deep leaRning approaches to Elucidate phytoplAnktonic cliMate induced variability

(ANR PRC DREAM, 2023-27)

* assess multi-decadal variability & trends of phytoplankton biomass
Aim:
* Understand the underlying physical and BGC processes

WP1 Improve the deep learning
architectures through various emulators

Data-driven: Y= f(X)

Ordinary and Partial Differential Equations:
0.Y = f(0,X), 0,Y =f(0,X,0,Y)....
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Deep leaRning approaches to Elucidate phytoplAnktonic cliMate induced variability

(ANR PRC DREAM, 2023-27)

assess multi-decadal variability & trends of phytoplankton biomass
Aim:

Understand the underlying physical and BGC processes

WP2a: reconstruct past multi-decadal
reconstruction at global scale

1978 1985 1997

WP3: quantify physical & bgc
uncertainties in climate models

now

WP1 Improve the deep learning
architectures through various emulators

Data-driven: Y= f(X)

Ordinary and Partial Differential Equations:
0.Y = f(0,X), 0,Y =f(0,X,0,Y)....

WP2b: better understand the link between
phyto and zooplankton biomass and communities
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Deep leaRning approaches to Elucidate phytoplAnktonic cliMate induced variability

(ANR PRC DREAM, 2023-27)

assess multi-decadal variability & trends of phytoplankton biomass
Aim:

Understand the underlying physical and BGC processes

WP2a: reconstruct past multi-decadal
reconstruction at global scale

1978 1985 1997

WP3: quantify physical & bgc
uncertainties in climate models

Pranond iy A \.4‘

now

WP1 Improve the deep learning
architectures through various emulators

Data-driven: Y= f(X)

Ordinary and Partial Differential Equations:
0.Y = f(0,X), 0,Y =f(0,X,0,Y)....

WP2b: better understand the link between
phyto and zooplankton biomass and communities
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WP1 & 2.a: Reconstruct long time-series of Chl at global scale from DL

light

nutrients phytoplankton

4
I
I

physical process

Hypothesis: physically driven at global scale
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WP1 & 2.a: Reconstruct long time-series of Chl at global scale from DL

Physical predictors:
Sea surface temperature
Sea level anomaly
Surface currents

Light

2003 2022

Target:
Satellite Chl
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WP1 & 2.a: Reconstruct long time-series of Chl at global scale from DL

Physical predictors:
Sea surface temperature
Sea level anomaly
Surface currents

Light

Train,

validate
[ \
2003 2010 2022

Numerical Schemes

Target:
Satellite Chl
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WP1 & 2.a: Reconstruct long time-series of Chl at global scale from DL

Physical predictors:
Sea surface temperature
Sea level anomaly
Surface currents

Light

Train,
. Test
vajidate 1
| \ ( \
2003 2010 2011 2022
Numerical Schem Apply

Reconstruct Chl
g Test

Target:
Satellite Chl
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WP1 & 2.a: Reconstruct long time-series of Chl at global scale from DL

Physical predictors:
Sea surface temperature
Sea level anomaly
Surface currents

Light
Trai
ra}n, Test
vajidate 1
[ | ( |
2022
1950"s 2003 2010 2011
- Apply E
Numerical Schem Apply

- Reconstruct Chl Reconstruct Chl

- Study & Test

9 Ctheconstructed

Data analysis Target: A
Satellite Chl &
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WP1 & 2.a: Reconstruct long time-series of Chl at global scale from DL

Satellite Chl trends over 2002-2020

b) OC-CCI

%.year!

-3

Pauthenet et al., GRL 2024
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WP1 & 2.a: Reconstruct long time-series of Chl at global scale from DL

Satellite Chl trends over 2002-2020 CNN
Train/valid
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WP1 & 2.a: Reconstruct long time-series of Chl at global scale from DL

Satellite Chl trends over 2002-2020 CNN
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WP1 & 2.a: Reconstruct long time-series of Chl at global scale from DL

Satellite vs. reconstructed Chl over the test period [2012-2017]

CNN

( Correlation \

* Data driven (static) : Y= f(X) (CNN, ConvLSTM, FourCastNet, Unet)
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WP1 & 2.a: Reconstruct long time-series of Chl at global scale from DL

Satellite vs. reconstructed Chl over the test period [2012-2017]

CNN

( Correlation \

* Data driven (static) : Y= f(X) (CNN, ConvLSTM, FourCastNet, Unet)

..1,9 26




WP1 & 2.a: Reconstruct long time-series of Chl at global scale from DL

Satellite vs. reconstructed Chl over the test period [2012-2017]

CNN

( Correlation \

* Data driven (static) : Y= f(X) (CNN, ConvLSTM, FourCastNet, Unet)

* Sequence to sequence (forecasting): 8,Y = f(0.X), 0;Y = f(0:X,0;Y).... (1to6 months)
Lakra et al., IEESS to be submitted

\ 60°E  120°E  180° 120°W  60°W o -10 27




WP2.a: investigate process

Satellite vs. reconstructed Chl (U-Net) over the test period [2012-2017]

Several predictors +SST (proxy MLD)
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* Reconstruction OK

Mahadevan et al., GRL in prep 28



WP2.a: investigate process

Satellite vs. reconstructed Chl (U-Net) over the test period [2012-2017]

) Several predictors + heat flux &wind (MLD forcing)
Several predictors +SST (proxy MLD)
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Reconstructed Chl
Reconstructed Chl

satellite Chl satellite Chl

* Reconstruction OK

* Use forcing rather than proxy OK - better understanding of process

Mahadevan et al., GRL in prep 29



WP2.a: investigate process

Test period [2012-2017]:

Satellite Chl

Seasonal signal
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WP2.a: investigate process

Test period [2012-2017]:

Satellite Chl

Seasonal signal
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Unet reconstructed Chl

Seasonal signal
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WP2.a: investigate process

Test period [2012-2017]:

Unet reconstructed Chl

* Investigate physical process

Seasonal signal

(a) Distribution of Spatial Correlation with Satellite Chl
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Deep leaRning approaches to Elucidate phytoplAnktonic cliMate induced variability

(ANR PRC DREAM, 2023-27)

* assess multi-decadal variability & trends of phytoplankton biomass

Aim:
* Understand the underlying physical and BGC processes
WP2a: reconstruct past multi-decadal WP3: quantify physical & bgc
reconstruction at global scale uncertainties in climate models
1978 1985 1997 now WP1 Improve the deep learning
architectures through various emulators
Data-driven: Y= f(X)
Ordinary and Partial Differential Equations:
d,Y = f(@,X), 8,Y=F(0,X,0,Y)....
WP2b: better understand the link between 733
e

phyto and zooplankton biomass and communities




WP3: from DL

1 Succeed to reconstruct trends in time & space 15 Earth System Models (ESM)
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WP3: from DL

1 Succeed to reconstruct trends in time & space 15 Earth System Models (ESM)
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WP3: from DL

1 Succeed to reconstruct trends in time & space 15 Earth System Models (ESM)
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Deep leaRning approaches to Elucidate phytoplAnktonic cliMate induced variability

Aim:

(ANR PRC DREAM, 2023-27)

assess multi-decadal variability & trends of phytoplankton biomass

Understand the underlying physical and BGC processes

WP2a: reconstruct past multi-decadal WP3: qu:
reconstruction at global scale

h S

—

1978 1985 1997 now

uncerta

WP1 Improve the deep learning
architectures through various emulators

Data-driven: Y= f(X)

Ordinary and Partial Differential Equations:
0.Y = f(0,X), 0,Y =f(0,X,0,Y)....

WP2b: better understand the link between

phyto and zooplankton biomass and communities
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WP2.b: Elucidating abiotic and phyto-zooplankton relationships from in situ obs

In situ obs. in

contrasted BGC environment:
< — - =
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Physical processes * High latitudes (North Atlantic)

* Oligotrophic area (Hawaii)
e Coastal upwelling (California)
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In situ obs.(Mer du Nord) '

Continuous Plankton Recorder (CPR)

orrales
> P =
A
3
8.
|
'
i

B o T D

38



WP2.b: Elucidating abiotic and phyto-zooplankton relationships from in situ obs
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Continuous Plankton Recorder (CPR)

In situ obs. in
contrasted BGC environment:
* Oligotrophic area (Hawaii)
e Coastal upwelling (California)

* High latitudes (North Atlantic)
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WP2.b: Elucidating abiotic and phyto-zooplankton relationships from in situ obs

Continuous Plankton Recorder
(CPR) dataset (1960-now)




WP2.b: Elucidating abiotic and phyto-zooplankton relationships from in situ obs
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+ changes in phyto & zooplankton communities

+ physical process & climate modes at stake

Roux et al., Global Change Biology in prep



WP2.b: Elucidating abiotic and phyto-zooplankton relationships from in situ obs

. BB NN Sl £
1990 2000 201 2020

03 _02— ~0.1 00 0‘1" 02 ¥ —moothed monthly means

PCI-Chl interannual anomalies (mg/m?)

+ changes in phyto & zooplankton communities

+ physical process & climate modes at stake

Roux et al., Global Change Biology in prep



Il reste 1,5 ans (27?). Que reste tfil a faire ?

WP2a: reconstruct past multi-decadal WP3: quantify physical & bgc
reconstruction at global scale uncertainties in climate models

* Reconstruct decadal scale
* Investigate process
(integrated gradient)

* Investigate process

WP1 Improve the deep learning
architectures through various emulators

* Diffusion model
(analogue)

WP2b: better understand the link between

phyto and zooplankton biomass and communities
* |Ain the different area of the North Atlantic
* Inthe californian upwelling
* Oligotrophic area (Hawaii)



THANKS FOR YOUR ATTENTION

ANY QUESTIONS?

Ingénieur d’étude 24 mais (au LOPS, breSt), possible ouverture de poste

en intelligence artificielle/machine learning appliqué a 'océanographie

Site de I'IRD (elodie.martinez @irdf.fr)
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WP2.a: investigate process

U-Net Satellite vs. reconstructed Chl over the test period [2012-2017]

(a) South Eastern 10 | full = 0.97, sla_w3 = 0.95
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WP3: from DL

a) Anomaly relative to 1900-1940

~0.06
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-0.12 Reconstruction |

1850 1900 1950 2000 0% 210
Year

Martinez et al., Science in prep

1 Succeed to reconstruct trends in time & space

2. Allowed us to deconvoluate the physical from BGC signal

a) ESM multi
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