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QC Argo — contexte et enjeux

Processus actuel

» Profils T/S soumis a une série de tests automatiques : date, position, pics, inversion densité,
pression croissante, valeurs constantes, et climatologie min-max

» Alertes générées ensuite analysées par inspection visuelle par un expert

Enjeux
* Volume important d’alertes a examiner
» Expertise humaine indispensable pour les cas complexes

Apport potentiel de I'|A

« Aider a l'analyse des alertes QC

« Reéduire les fausses alertes tout en conservant un bon niveau de détection

* Mieux cibler I'intervention de I'expertise humaine

» Apprendre a reproduire certains comportements experts récurrents sur des alertes QC

— Trois approches parmi d’autres sont explorées
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Deux échelles d’analyse QC

Analyse par profil: évaluation de la cohérence globale du profil
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Analyse par point : décisions locales
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Méthode 1 : Interpolateur T/S

Objectif: comparer les valeurs T/S d’un profil a des valeurs de référence prédites par un interpolateur

Principe

» Prédiction, point par point, d’'une valeur attendue de température et de salinité a partir d’'une position
(longitude, latitude, profondeur)

» Calcul de I'écart entre la valeur prédite et la valeur réelle

» Identification des points présentant un écart significatif

Décision QC

» Les écarts sont calculés localement, point par point

* Une alerte peut étre levée lorsque plusieurs points d’'un méme profil présentent des écarts significatifs
» Les criteres de décision sont définis explicitement, en dehors du modeéle

Evaluation
* Recherche de corrélations entre le QC existant et I'erreur de reconstruction du profil de référence
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Méthode 1 : Interpolateur T/S

Données et entrainement du modele

Jeu de données

* Apprentissage et validation: Profils Argo 2014—-2023

» Test: Profils Argo 2024 (temporellement indépendant)
» Données considérées comme valides (QC = 1)

Apprentissage

* Architecture MLP
* Entrainement réalisé a ce stade sur ~1500 profils et 1 M de points
* Total train: ~1,5 M de profils, 760 M de points

Exemple de profil reconstruit et distribution des erreurs sur le jeu de test
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Méthode 2 : Vision par ordinateur

Approche profil par profil : représentation visuelle des profils

Principe

» Conversion des profils T/S en représentations visuelles (images)

* Le profil d’intérét est tracé avec des profils proches géographiquement
afin de fournir un contexte local

* Analyse des images par un réseau de type YOLO (You Only Look Once)

* Apprentissage supervisé a partir de profils annotés par des experts

» Repérage de profils visuellement atypiques

Evaluation
+ Comparaison entre les sorties du modele et les annotations expertes

Philosophie de I'approche
Le modele n’integre aucune connaissance oceanographique explicite ; il
apprend des régularités visuelles présentes dans des profils déja expertisés.
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Methode 2 : Vision par ordinateur

Données et entrainement du modeéle YOLO train/loss
Jeu de données 561

* Profils T/S Argo — année 2021 0251 &
4000 profils représentés sous forme d’images

* Annotations issues du QC expert existant 010

val/loss

Apprentissage .
* Entrainement : 80 % des profils Ll
« Validation : 20 % des profils 0.20
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Matrice de confusion illustrant la cohérence entre sorties du modéle et annotations expertes, sur le jeu utilisé:

*  97% de détection « OK », 3% de fausses alertes
*  96% de détection « KO », 4% d'erreurs non détectées
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Jeu utilisé
» EasyOneArgoTS (années 2021-2022)
» Jeu de profils Argo considérés comme valides

Principe e
* Application du modele a grande échelle (~283 000 profils) sy e

» Attribution d’un score par profil o1
» Sélection des profils les plus atypiques selon différents seuils

Résultats observes

» Selon le seuil retenu, seuls quelques centaines de profils sont signalés

» Parmi ces profils, certains présentent des caractéristiques visuelles
atypiques, bien que le jeu soit considéré comme valide
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https://doi.org/10.17882/107233

Meéethode 3 : Post-traitement des alertes QC

Objectif
» Reéduire le nombre de fausses alertes générées par les tests de QC automatique
« Concentrer I'expertise humaine sur les alertes pertinentes

Référence existante
* Mieruch S et al. (2025) SalaciaML-2-Arctic — a deep learning quality control algorithm for Arctic Ocean
temperature and salinity data. doi: 10.3389/fmars.2025.1661208

Principe (approche hybride QC traditionnel + ML)

* Modele ML appliqué uniguement aux alertes générées par le QC automatique, point par point
» Apprentissage supervisé a partir de décisions expertes existantes
» Requalification de certaines alertes jugées non pertinentes

Evaluation

+ Comparaison des sorties du modele ML avec les décisions expertes
* Analyse de la réduction du nombre d’alertes transmises a I'expert

» Vérification du maintien du taux de détection des alertes pertinentes

- Résultats mitigés lors de tests préliminaires, nécessité d’adapter le principe au cadre spécifique du QC
Argo



Conclusion

Apports

»  Approches IA complémentaires au QC Argo
» Vision par ordinateur : exploration visuelle et repérage de profils atypiques a I'échelle du profil
» Interpolateur : estimation d’'une référence locale et comparaison de profils a cette référence
* Post-traitement QC : pour filtrer certaines alertes issues du QC classique

*  Objectif : mieux cibler les cas a investiguer et de rationaliser I'effort d’expertise

« Le QC et I'expertise humaine restent centraux

* Les modéles n'apportent pas de décision QC

Vigilances

* Perte d’explicabilité

* Risque de lever de nouvelles fausses alertes ou de supprimer/corriger de vraies alertes
« Deésequilibre des classes

«  Evaluation et comparaison des méthodes (IA vs QC classique)
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