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Notre mission

« Soutenir la mise en place et le développement

d'une plateforme souveraine, ouverte et FRAN C E
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Notre mission

<[>
Développer

Développer ou soutenir le développement
de bibliotheques logicielles

CO

Pérenniser

Maintenir ces communs a |'état de 'art
scientifique et de la pratique technique
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Intégrer

Assurer une interopérabilité sans couture
entre les bibliotheques

<)

Disséminer

Favoriser ’adoption dans le monde
académique et industriel




Communs numériques
pour une |A souveraine

Notre référence, scikit-learn
L

scikit-learn est 'une des bibliotheques open source les plus populaires

pour le machine learning, largement utilisée dans le monde académique et X Features
industriel.
Impact O Classification: SVM, Random Forest, k-NN...
v Adoptée par des milliers de chercheurs et de data scientists O Régression: Linear Regression, Ridge, Lasso...
v' Pilier des workflows ML académiques et industriels O Clustering: k-Means, DBSCAN...
v’ Contributions massives et améliorations continues O Réduction de dimensionnalité: PCA, LDA...
O Sélection de modéle: GridSearchCV, cross-
validation...
U Data pre-processing: normalisation,
encodage, imputation des valeurs
* . Etoiles: 61.4k * Projets dépendants: 1 million+ manquantes...
* || Forks:25.7k « © Packages dépendants: 20,000+

* 28 Contributeurs: 2,900+
* 5] Commits: 49,000+
* %" Releases: 40+
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« Identification et validation des  Entreprise a Mission de Souveraineté
librairies a intégrer Industrielle et Numérique

» Pré-industrialisation des librairies * Industrialisation des librairies

« Développement de cas d'usage et + Offre commerciale

applications métier * Produits
* Professional services
« Collaborations scientifiques et * Formation et certification

rayonnement de la recherche

beeia—



Appel a manifestation d’intérét

Intégration dans le cycle

de la donnee

démontrer comment la bibliotheque
contribue a la vision globale de P16 et
peut s’intégrer ou étendre une des
actions techniques (interopérabilité,

préparation, apprentissage)

Intérét pour la
souveraineté numérique

démontrer en quoi la bibliotheque
contribue a renforcer la position
nationale et européenne dans le
domaine de 'lA (paysage

concurrentiel, gouvernance...)
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Résonance avec les
besoins de l'écosystéeme

démontrer comment les
solutions développées peuvent
répondre a des cas d'usage
spécifiques, ciblant des besoins

industriels identifiés.




Instruction des dossiers

Candidature d’'une

bibliotheque

A living
document

MAJ des benchmarks,
alignement des use
cases...

Veille / état art

Benchmarks
Evaluation technique

Instruction technique

Recrutement d’ingénieurs

Pré-industrialisation
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Instruction stratégique

Intérét pour le domaine
|dentification des besoins et
use cases aupres des
partenaires

Consultation des directeurs
scientifiques
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Intéropérabilité

Data Preparation Machine Learning
Zacmt’er lacces et le partage de Simplifier et Automatiser les Boite 3 outils de Data
onneées A ; :
Web sémantique & Knowledge graphs tad]e? 22 PIEPREHEn eis Science
données

Autres sujets d’intérét

Séries temporelles Quantification Explicabilité Hybridation LLM / ML-DL, Apprentissage fédéré,
d'incertitude Optimisation, Validation formelle, Reservoir
o T computing, etc.
N aeon MAP} @) lﬁ
70 pas
? 77N
NAA : o
Partenaires V% YA (A navte-atsace  Capgomini@invent m
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Bibliotheques logicielles

b

2L —

Partenaires

08
Data Preparation

Simplifier et Automatiser les
taches de préparation des
données

UYA  CAHRNERSIE  Capgomini@invent m
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Skrub

U Une bibliothéque Python dédiée au prétraitement des
données tabulaires pour le Machine Learning
* Objectif : Simplifier le nettoyage, I'enrichissement et la
préparation des tables de données pour les modeles de ML.
e Compatibilité : Fonctionne avec les DataFrames de Pandas
et Polars, et s'integre parfaitement avec Scikit-learn.
* QOpen-source

% Cas d’usage

O Jointure entre tables : relier des bases de ) skrub.fuzzy_join
données avec des correspondances imparfaites
(ex. « Air France » et « Air-France »)

1 Analyse rapide de la qualité des données : ) skrub table_report

diagnostic automatique d’un DataFrame
L Gestion des formats : convertir automatiques les ) skrub.TableVectorizer
données en formats exploitables par les modeles



Exemple 1: TableVectorizer

Saw cardl.nallty Datetime .ng.h Number
| categorical | cardinality cat.
Gender | Contract type | Hiring date Position Salary
M Fulltime 03/02/2015 | Bus operator | 55000
F " Part-time | 11/11/2001 Firefighter 85000
[ @ TableVectorizer
OneHotEncoding | OneHotEncoding DatetimeEncoder| GapEncoder [Passthrough

(Gender) (Contract type) (Hiring date)

(Position)

(Salary)
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Exemple 2 : Augmenter les variables par jointure

Movie title | Director| Cntr

Title Year  Rating Yourname | e | Japan

India 1691
E.T. 1982 Uried

7.9 unkad |3 367
Your name 2016 84 T | Mexico | 1289
1 . sl Japan | 634

: ‘W Joiner .

Movie title | Director | Country Year  Rating -

E.T. Soiaberg | USA | 1982 7.9 1361

Your name | M3kt | japan | 2016 8.4 634

.12
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Exemple 2 : Augmenter les variables par jointure

Movie title =Director| Cntr
Makoto
Title Year  Rating Your name | ghinia | Japan India 1691
E.T. 1982 7.9 ed | 1361
—
Your name 2016 84 Mexico | 1289
— . _ — Japan | 634
: ‘W Joiner .

Movie title | Director | Country ~ Year  Rating -

E.T. Soiaberg | USA | 1982 7.9 1361

Your name | M@ | japan | 2016 8.4 634

Shinkai

from skrub import Joiner

result = Joiner(aux_table, main_key="coll",

aux_key="col2").fit_transform(main_table)

- 13
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Intéropérabilité

Faciliter ’acces et le partage de

données
Web sémantique & Knowledge graphs

Séries temporelles

N aeon

tslea

Bibliotheques logicielles

o

Data Preparation

Quantification
d'incertitude

MAP}

Partenaires Y YA

Simplifier et Automatiser les
taches de préparation des
données

Explicabilité
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Machine Learning

Boite a outils de Data
Science

Autres sujets d’intérét

Hybridation LLM / ML-DL, Apprentissage fédéré,
Optimisation, Validation formelle, Reservoir
computing, etc.

Capgomini@invent m
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Séries temporelles
tslearn
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Tslearn : ML pour séries temporelles

U Une librairie Python spécialisée E E
e Qutils optimisés pour I’'analyse et le traitement =
des séries temporelles A\ /3
* Compatible avec Scikit-learn 7 \-;'j\i;:. / E .

* Open-source O\
tslearn \j
% Cas d’usage

O Clustering : Regrouper des séries similaires (ex. _ _ _
: . ) tslearn.clustering.TimeSerieskKMeans

clients avec comportements similaires)

4 Classification : Attribuer une étiquette prédéfinie tslearn.neighbors.KNeighborsTimeSeriesClassifier
a une série temporelle (ex. détection de pannes)

O Alignement de séries : Comparer des séries ) tslearn.metrics.dtw
temporelles de longueurs différentes (ex.
reconnaissance de gestes)



Exemple 1 : recherche de similarité

Default distance : dtw

import numpy as np
from tslearn.neighbors import KNeighborsTimeSeriesRegressor
from tslearn.datasets import CachedDatasets

# Load the Trace dataset
X _train, y_train, X test, y test

# Set up KNN regressor

n_neighbors = 4

knn = KNeighborsTimeSeriesRegressor({n_neighbors=n_neighbors)
knn.fit(X train, y_train)

# Find nearest neighbors and make predictions for the first 2

n_gueries = 2

predictions = knn.predict(X_test[:n_queries])
dist, ind = knn.kneighbors(X_test|[:n_queries])

CachedDatasets().load dataset("Trace™)
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Queries (in black) and their nearest neighbors (red)
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What is a shapelet SRR
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Potential Shapelet
Time Series 1

Time Series 2

T 18
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Exemple 2 : tslearn, Keras & Shapelets ...

import numpy as np

from tslearn.datasets import CachedDatasets

from tslearn.preprocessing import TimeSeriesScalerMinMax
from tslearn.shapelets import LearningShapelets

from tensorflow.keras.optimizers import Adam

X_train, y_train, _, _ = CachedDatasets().load _dataset("Trace")
X_train = TimeSeriesScalerMinMax().fit_transform(X_train)
shapelet_sizes = {28: 2} # 2 shapelets of Length 2é
model = LearningShapelets(n_shapelets_per_size=shapelet_sizes,
weight_regularizer=1le-4,
optimizer=Adam(©.01),
max_iter=360, scale=False, random_state=42)
model.fit(X_train, y_train)

Shapelet s, Shapelet s;
2.5 - i
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.-_*
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D.( - m— : 0.0 4, :
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Distance transformed time series
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Autres exemples
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* Preprocessing and transformation (normalization, dimensionality reduction, handling timeseries with variable
lengths, subsequence extraction, etc.)

using a robust average / barycenter (e.g., typical consumption
profile)

* Clustering (e.g., grouping client profiles based on their energy-consumption)

(e.g., Electrical Appliance detection based on consumption patterns, anomaly detection, Grid
failure causes)

* Motif Extraction (e.g., identifying characteristic subsequences that allow for the distinction of classes)

(e.g., early detection of a failure from the first signs in the series)

T 20
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Rejoignez notre
Ecosysteme

1 Contact y) Website
programme-ia.plé6@inria.fr Visiter notre site :
pl6.inria.fr

y 4
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