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Different data, same primary variables, same workflow
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Different data, same primary variables, same workflow
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Different data, same primary variables, same workflow
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Training tutorials for Ecology

Data and Metadata Management

These tutorials are focusing on data and metadata management in Ecology.

Data analysis

These lessons focus on ways to analyse data in Ecology
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“e Part 1: Detection of marine species
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dr We will use selected images from the SEANOE dataset {% cite lebeaud2024deepsea %).
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. Using Jupyter notebook
# Annotations & Al From camera trap video to species
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# Annotations & Al =

Label

New: Using Hugging Face models in Galaxy Ecology

M openai/clip-vit-base-patch3?

I openai-community/gpt2

B openai/clip-vit-large-patchi4

I openai/clip-vit-large-patch14-336
I openai/gpt-0s5-20b

I openai/whisper-large-v3

W openai/wh isper-large-v3-turbo

User Preferences / My Repositories / Create New / Hugging Face Hub &
M openai-community/gpt2-large
Create a Hugging Face Hub (= File Source M cpenai/clip-vit-Dase-patch16

Name * M openai/whisper-small

My Hugging Face Account W openai/gpi-0ss-126b

O
O
O
O
O
O
O
O
O
O
O
O
O

Label this new file source with a name. B8 opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill

Description - ostionsl
1Back X Cancel | VST

Provide some notes to yourself about this file source - perhaps to remind you how it is configured, where it stores the data, etc..
Hugging Face Hub Endpoint
' https:/huggingface.co

Custom endpoint of the Hugging Face Hub you are connecting to. This should be the full URL including the protocol (http or https) and the
domain name. You can leave this blank to use the default Hugging Face Hub endpoint (https:/huggingface.co).

Hugging Face Access Token

The personal access token to use to connect to the Hugging Face Hub. You can generate a new token in your Hugging Face account
settings. This will allow Galaxy to access private models if you have the necessary permissions.
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