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EcoTaxa aujourd’hui

750M images, 250M validées par un 
opérateur humain 

+15M par mois 

5,000 to 10,000 validations/opérateur/j 

>4500 users from ~900 organisations 

~125 utilisateurs concurrents 
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306 9. Additive Models, Trees, and Related Methods
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FIGURE 9.2. Partitions and CART. Top right panel shows a partition of a
two-dimensional feature space by recursive binary splitting, as used in CART,
applied to some fake data. Top left panel shows a general partition that cannot
be obtained from recursive binary splitting. Bottom left panel shows the tree cor-
responding to the partition in the top right panel, and a perspective plot of the
prediction surface appears in the bottom right panel.
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3.3 Rare classes are where CNN outperform classical approaches 

 355 
Figure 2: Performance comparison between a small CNN (Mob + MLP600), a RF trained on handcrafted features and a random 
classifier on all six datasets. Both class weighted and non-weighted versions of the models were evaluated. The models are 
described in Fig. 1. Plain bars show the value of each metric at the finest taxonomic level, striped bars show the value after 
regrouping objects into broader ecological groups. 

In terms of overall accuracy, the CNN performed only slightly better on all datasets than the classical approach of using 360 

handcrafted features and an RF classifier (+3.5% to +43.8% depending on the dataset; +15.1% on average) (Fig. 2). The use 

of class weights slightly decreased the accuracy of both the deep and classical approaches, as it focused training on small 

classes and less on large classes, which account for more in the computation of accuracy. Note that a random classifier 

achieved 55%, 61% and 63% accuracy on the detritus-dominated IFCB, ISIIS and UVP6 datasets, respectively. While the 

accuracies of all non-random models were higher, they must be gauged in terms of the increase over the random model and 365 

not in absolute terms. 

 

Deep approaches showed much higher balanced accuracies than classical ones, as well as improved precisions and recalls 

averaged over plankton classes; this was true both with and without weights (Fig. 2). The balanced accuracy of the random 

classifier was very poor in all datasets, confirming that this metric is more relevant in datasets with many small classes. The 370 

improvements brought by CNN were associated with the fact that they performed better on non-dominant classes (e.g. 

Tables 4, S2-S6). 

https://doi.org/10.5194/essd-2025-309
Preprint. Discussion started: 6 June 2025
c� Author(s) 2025. CC BY 4.0 License.
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Classique vs deep: le deep est meilleur surtout pour les classes rares

Panaïotis et al, ESSD

Random
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after the first epoch, causing the model to adhere too closely to the training data and impair its ability to generalize. This may 

be due to the relatively small training dataset, which, in proportion to the number of parameters in the model, increases the 

risk of overfitting. The effect was especially pronounced with the UVP6 dataset, which is not only small (~635,000 images) 

but also has a low proportion of plankton images (7.7%); both balanced accuracy and plankton-specific metrics (average 

precision and recall) were notably impacted. On the other hand, compressing the features before classification, by using a 395 

fully connected layer of size 50 instead of 600 after the MobileNet feature extractor, did not reduce classification 

performance (Fig. 3). Both results suggest that a relatively small model is enough to extract all informative content from the 

small, grayscale plankton images in these datasets. 

3.5 The features are more important than the classifier 

 400 
Figure 4: Performance comparison between our reference CNN (Mob + MLP600), a RF trained on deep features extracted by a 
MobileNet V2 without (Mob + RF) and with (Mob + PCA + RF) feature reduction, and a RF trained on handcrafted features on 
all six datasets. The models are described in Fig. 1. Plain bars show the value of each metric at the finest taxonomic level, striped 
bars show the value after regrouping objects into broader ecological groups. 

Moving from native features to MobileNet deep features before the RF classifier significantly increased all classification 405 

metrics (Fig. 4). On the contrary, performance stayed the same when the MLP600 classifier was replaced by a RF after the 

same MobileNet feature extractor. This suggests that the classifier itself is of relatively little importance; rather, it is the 

https://doi.org/10.5194/essd-2025-309
Preprint. Discussion started: 6 June 2025
c� Author(s) 2025. CC BY 4.0 License.

20 
 

after the first epoch, causing the model to adhere too closely to the training data and impair its ability to generalize. This may 

be due to the relatively small training dataset, which, in proportion to the number of parameters in the model, increases the 

risk of overfitting. The effect was especially pronounced with the UVP6 dataset, which is not only small (~635,000 images) 

but also has a low proportion of plankton images (7.7%); both balanced accuracy and plankton-specific metrics (average 

precision and recall) were notably impacted. On the other hand, compressing the features before classification, by using a 395 

fully connected layer of size 50 instead of 600 after the MobileNet feature extractor, did not reduce classification 

performance (Fig. 3). Both results suggest that a relatively small model is enough to extract all informative content from the 

small, grayscale plankton images in these datasets. 

3.5 The features are more important than the classifier 

 400 
Figure 4: Performance comparison between our reference CNN (Mob + MLP600), a RF trained on deep features extracted by a 
MobileNet V2 without (Mob + RF) and with (Mob + PCA + RF) feature reduction, and a RF trained on handcrafted features on 
all six datasets. The models are described in Fig. 1. Plain bars show the value of each metric at the finest taxonomic level, striped 
bars show the value after regrouping objects into broader ecological groups. 

Moving from native features to MobileNet deep features before the RF classifier significantly increased all classification 405 

metrics (Fig. 4). On the contrary, performance stayed the same when the MLP600 classifier was replaced by a RF after the 

same MobileNet feature extractor. This suggests that the classifier itself is of relatively little importance; rather, it is the 

https://doi.org/10.5194/essd-2025-309
Preprint. Discussion started: 6 June 2025
c� Author(s) 2025. CC BY 4.0 License.

Pourquoi? Ce sont les descripteurs, pas le classifieur

Panaïotis et al, ESSD

2.8=>



Descripteurs natifs + PCA(descripteurs 
deep fixes) + RF  ... Pourquoi?

1. Simplicité (d’implémentation): il suffisait d’ajouter des descripteurs 
deep à une infrastructure de classification déjà disponible 😉 

2. Rapidité: entrainer un RF en parallèle est plus rapide qu’entrainer un 
CNN complet; fine tuner uniquement la partie dense d’un CNN (i.e. 
classifieur) n’a pas vraiment d’intérêt 

3. Robustesse: facile de combiner n’importe quels descripteurs natifs et 
des descripteurs deep (pas sensible à la distribution) 

4. Stabilité: RF a montré une grande stabilité de performance dans 
diverses configurations 

5. Calibration: RF calcule, de façon native, des probabilités d’être dans 
chaque groupe. Celles-ci sont plus fiables et mieux distribuées que 
celles d’un MLP
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Une autre utilisation de l’infrastructure de machine learning
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Quels descripteurs de deep learning?



Quels descripteurs de deep learning?



Merc i !


