
felyx - GHRSST XXIII
VRE et Accès aux Données

Atelier ODATIS, 10-11 Oct 2024



A (Pangeo) Virtual Research Environment

Data + Infrastructure + Software + Community

https://pangeo.io 

https://pangeo.io


VRE example (CNES)





Jupyter

edit and run code locally or remotely 
(jupyterhub) within a web navigator

write notebooks

mix in text, processing code, result plots : 
full analysis, story, course/tutorial, 
workflows…

works with Python, Julia, R, …

shareable (git,..), repeatable > open science - 
numerous recipes, science work, tutorials,...

available on many infrastructures, science 
clouds,... 

many complementary packages



Streamlining scientific analysis workflows 

● workflow editing and execution environment: Jupyter / 
JupyterLab

● remote data access and processing: JupyterHub
● data selection and loading : Intake, STAC, Opensearch
● abstraction over N-dimensional data arrays: Xarray, Pandas 
● performances:

○ cloud optimized format: kerchunk 
○ distributed processing: Dask

● all useable within Jupyter notebooks

Jupyter, Xarray and Dask now widely used and popular in 
scientific community (Ocean, Weather, Climate)



ODATIS “Datalake”

ODATIS data 
stores (CDS)

Datarmor TREX

VRE VRE

interoperable data access protocols
mirror (user triggered or sustained by infra) 

infrastructures 
(Data Terra)

user 
applications



A typical VRE user workflow

● Opening a Jupyter session
● Searching (Sextant) data catalogue or thematic catalogue
● from product landing page:

○ get data access points (posix, S3, OpenDAP,...)
○ get data search end-points (STAC)
○ (optional) get sample notebook on dataset usage

● starting to write my own notebook
○ search assets to open matching user criteria
○ read data
○ do some stuff…

● more advanced: from manual analysis to automation/repetition : 
batch processing, workflow managers, … => requires data 
persistency, automatic updates, … 



searching for geospatial data

typical of low orbit satellite data, performing multiple revolutions per day - or 
buoy/ship => selecting granules (swath sections, profiles,... - files) matching a 
given time frame and area of interest







Xarray

Enrich and make more flexible the usage of numerical arrays, build relations between these arrays

A Python package providing 2 main classes:

● DataArray: a labelled multidimensional variable and its coordinates ~ enriched numpy array
● Dataset: group several variables sharing possibly coordinates ~ NetCDF file content

DataArray

● values : data of the variable
● dims : dimensions of each array axis (for instance:  ('x', 'y', 'z'), (‘time’, ‘lat’, 

‘lon’),...)
● coords : associated arrays (coordinates), to use for indexing along each dimension ~ tick 

labels
● attrs : metadata (attributes) of the variable as a dictionary (for instance: units, 

standard_name, comment,...)

DataSet

A Dataset contains several DataArrays indexed by a variable name



Xarray

Xarray operations:

● labelled selection and operations 
(on named axes)

● piping operations
● ideal for work with gridded time 

series (models, L3/L4)
○ statistical operations on labelled axes
○ groupby 
○ resampling 

● blends with plotting frameworks 
(matplotlib, cartopy)

Also checkout pandas 
(https://pandas.pydata.org), for 
another data model more oriented toward 
Data Frames and Time Series

https://pandas.pydata.org


From persistence to memory

Data formats are heterogeneous

Some reading libraries provide the mapping from native format to numerical 
structures, e.g xarray (NetCDF, Zarr, grib, HDF5,...), cerbere, … 

Some access protocols provide also this abstraction (by handling upstream the 
format issue):

● OpenDAP -> integrates well with several API (Xarray, C/C++,...)
● OGC protocols

Benefit of these protocols in addition to remote access and subsetting

Some cataloguing solutions include readers for seamless in memory loading:

● intake



Intake

A package for finding, investigating, loading 
and disseminating data

A Catalogue of data collections

associates file collection, default reader, 
default plotting : series of files can be 
loaded into memory as a multidimensional 
array

=> provides abstraction over data location 
and data format

works well with regularly organized data 
(gridded data), limitations with scattered 
data (satellite, in situ,...)

example: 
https://gitlab.ifremer.fr/cersat/recipes/-/bl
ob/main/intake/lops_intake.ipynb  

https://gitlab.ifremer.fr/cersat/recipes/-/blob/main/intake/lops_intake.ipynb
https://gitlab.ifremer.fr/cersat/recipes/-/blob/main/intake/lops_intake.ipynb


Conclusion

many (mainly python) packages and tools now available to 
speed up science workflows

● relieve users from burden such as data selection, access, 
transfer and reading

● take advantage of large processing resources concentrated 
within data centers - cloud or HPC

● sharing - collaborative work ; users at different places 
can see and execute the same thing

Importance dans ODATIS de mettre en place les couches basses 
: accès aux données - protocoles standardisés et homogènes 
dans ses différentes composantes


