Workshop LEFE-CYBER / ILICO / ODATIS

Introduction à l'intelligence artificielle dans l'assimilation des données géophysiques

Said Ouala

IMT Atlantique, Lab-STICC, Brest, France;

Outline

- Geophysical state estimation: models vs observations
- IA in geophysical state estimation and DA:
 - Higher resolution interpolation: general framework and applications
 - Generative models and data assimilation for modeling dynamical systems
 - End-to-end (online) Learning in Hybrid Modeling Systems

- Forecast
- Long term simulations
- Understanding of physical processes

- Forecast
- Long term simulations
- Understanding of physical processes

- State monitoring
- Model validation

- Forecast
- Long term simulations
- Understanding of physical processes

- State monitoring
- Model validation

• Initialization of the models

• Initialization of the models

• Data reconstruction and interpolation

- Numerical discretization errors
- Model bias correction
- Choice of some parameterizations
- How to increase the predictability
- How to model a subset of variables

- Numerical discretization errors
- Model bias correction
- Choice of some parameterizations
- How to increase the predictability
- How to model a subset of variables

- How to explore these big amounts data
- How to design new sensing missions

Improving geophysical state estimation using machine learning and AI

- Higher resolution interpolation
- Data driven synergy, emulators

• Point of view from both AI generative models/standard DA schemes for surrogate modeling Machine learning, data assimilation and uncertainty quantification

- Surrogate modeling
- Accelerating model resolution
- Model tuning and parameterization, hybrid models

- → Formulation of higher resolution interpolation with examples
- → Generative models and data assimilation for modeling dynamical systems
- → End-to-end Learning of sub-models in Hybrid Modeling Systems

AI for observations

Higher resolution interpolation: general framework and applications

Problem statement

Inversion method

- Easy implementation and testing
- Takes advantage of recent developments in AI architectures

- Easy implementation and testing
- Takes advantage of recent developments in AI architectures

- Uncertainty quantification?
- Forecasting applications?

- Easy implementation and testing
- Takes advantage of recent developments in AI architectures

- Uncertainty quantification ? Generative models

Turn spatiotemporal interpolation into a Bayesian filtering problem:

Turn spatiotemporal interpolation into a Bayesian filtering problem:

Turn spatiotemporal interpolation into a Bayesian filtering problem:

Turn spatiotemporal interpolation into a Bayesian filtering problem:

- State variabl $\mathbf{z}_{t+1} = \mathcal{M}_{\theta}(\mathbf{z}_{t}) + \varepsilon_{t}$ Observations $\mathbf{x}_{t} = \mathcal{H}_{\theta}(\mathbf{z}_{t}) + \mu_{t}$

Turn spatiotemporal interpolation into a Bayesian filtering problem:

- State variabl $\mathbf{z}_{t+1} = \mathcal{M}_{\theta}(\mathbf{z}_t) + \varepsilon_t$ Observations $\mathbf{x}_t = \mathcal{H}_{\theta}(\mathbf{z}_t) + \mu_t$
- Observations

Learning steps:

• Compute the state variable using an inversion scheme (e.g. Ensemble Kalman, 4D-Var) \tilde{z}_t

Turn spatiotemporal interpolation into a Bayesian filtering problem:

- State variabl $\mathbf{z}_{t+1} = \mathcal{M}_{\theta}(\mathbf{z}_t) + \varepsilon_t$ Observations $\mathbf{x}_t = \mathcal{H}_{\theta}(\mathbf{z}_t) + \mu_t$
- Observations

Learning steps:

- Compute the state variable using an inversion scheme (e.g. Ensemble Kalman, 4D-Var) \tilde{z}_t
- Compute the gap free observations using the forward model $\tilde{x}_t = H(\tilde{z}_t)$

Turn spatiotemporal interpolation into a Bayesian filtering problem:

- State variabl $\mathbf{z}_{t+1} = \mathcal{M}_{\theta}(\mathbf{z}_t) + \varepsilon_t$ Observations $\mathbf{x}_t = \mathcal{H}_{\theta}(\mathbf{z}_t) + \mu_t$

Learning steps:

- Compute the state variable using an inversion scheme (e.g. Ensemble Kalman, 4D-Var) \tilde{z}_t
- Compute the gap free observations using the forward model $\tilde{x}_t = H(\tilde{z}_t)$

 \mathbf{z}_{t-h}

 \mathcal{M}_{θ} (•

 $\mathcal{M}_{ heta}$ (•

 \mathbf{z}_{t+h}

 \mathbf{z}_t

Minimize $|x_t - H(\tilde{z}_t)|$

Turn spatiotemporal interpolation into a Bayesian filtering problem:

- State variabl $\mathbf{z}_{t+1} = \mathcal{M}_{\theta}(\mathbf{z}_t) + \varepsilon_t$ Observations $\mathbf{x}_t = \mathcal{H}_{\theta}(\mathbf{z}_t) + \mu_t$
- Observations

Learning steps:

- Compute the state variable using an inversion scheme (e.g. Ensemble Kalman, 4D-Var) \tilde{z}_t
- Compute the gap free observations using the forward model $\tilde{x}_t = H(\tilde{z}_t)$

- Naturally deals with missing data
- Can do forecast

Turn spatiotemporal interpolation into a Bayesian filtering problem:

- State variabl $\mathbf{z}_{t+1} = \mathcal{M}_{\theta}(\mathbf{z}_{t}) + \varepsilon_{t}$ Observations $\mathbf{x}_{t} = \mathcal{H}_{\theta}(\mathbf{z}_{t}) + \mu_{t}$

Learning steps:

- Compute the state variable using an inversion scheme (e.g. Ensemble Kalman, 4D-Var) \tilde{z}_t
- Compute the gap free observations using the forward model $\tilde{x}_t = H(\tilde{z}_t)$

- Naturally deals with missing data
- Can do forecast
- Probabilistic formulation

Higher resolution interpolation, examples

Interpolation results of SLA data in med sea

SST anomaly

AI for Data Assimilation

Generative models and data assimilation for modeling dynamical systems

Problem statement

Problem statement

• Let us start from the same state space model and assume we want to do interpolation forcesst etc.

interpolation/forecast etc.

• We showed previously how to use DA to solve interpolation/forecasting problems

Problem statement

• Let us start from the same state space model and assume we want to do interpolation/forecast etc.

• We showed previously how to use DA to solve interpolation/forecasting problems

• We can use ideas from generative modeling to do the same tasks

Problem statement

• Let us start from the same state space model and assume we want to do

interpolation/forecast etc.

• We showed previously how to use DA to solve interpolation/forecasting problems

• We can use ideas from generative modeling to do the same tasks

• For instance, we can maximize the evidence lower bound of the SSM:

$$\underbrace{\log p_{\theta}(\mathbf{x}_{t_0:t_N})}_{\text{Model evidence}} = \underbrace{-\mathbb{E}_{q_{\phi}} \left[\log q_{\phi}(\cdot \mid \mathbf{x}_{t_0:t_N})\right] + \mathbb{E}_{q_{\phi}} \left[\log p_{\theta}(\cdot, \mathbf{x}_{t_0:t_N})\right]}_{\text{Marginal log Likelihood (ELBO)}} + \underbrace{D_{KL} \left(q_{\phi}(\cdot \mid \mathbf{x}_{t_0:t_N}) \| p_{\theta}(\cdot \mid \mathbf{x}_{t_0:t_N})\right)}_{\text{Intratable, } > 0}$$

Application example, Learning dynamical systems from noisy/partial observations

Lorenz 63 system

Training both the:

- Dynamical model
- The noise variances
- The Filter

Application example, Learning dynamical systems from noisy/partial observations

Lorenz 63 system

Training both the:

- Dynamical model
- The noise variances
- The Filter

An example of the first dimension of the L63 system reconstructed by the inference module of our model. The observations are noisy (r = 33%) and irregularly sampled

Application example, Learning dynamical systems from noisy/partial observations

An example of the first dimension of the L63 system reconstructed by the inference module of our model. The observations are noisy (r = 33%) and irregularly sampled

Ongoing works on further links between DA and generative models

$$\underbrace{\log p_{\theta}(\mathbf{x}_{t_0:t_N})}_{\text{Model evidence}} = \underbrace{-\mathbb{E}_{q_{\phi}} \left[\log q_{\phi}(\cdot \mid \mathbf{x}_{t_0:t_N})\right] + \mathbb{E}_{q_{\phi}} \left[\log p_{\theta}(\cdot, \mathbf{x}_{t_0:t_N})\right]}_{\text{Marginal log Likelihood (ELBO)}} + \underbrace{D_{KL} \left(q_{\phi}(\cdot \mid \mathbf{x}_{t_0:t_N}) \| p_{\theta}(\cdot \mid \mathbf{x}_{t_0:t_N})\right)}_{\text{Intratable}, > 0}$$

- Given the parameters of the SSM, than maximizing the ELBO gives us a filter
- If the filter converges, we even have an estimate of the model evidence (can be used for model selection)
- Benchmark this framework against standard DA for applications such as filtering, smoothing, and parameters/evidence estimation

AI for Numerical Models

End-to-end Learning of sub-models in Hybrid Modeling Systems

Reality

$$\begin{cases} \frac{\partial \mathbf{u}^{\dagger}_{t}}{\partial t} &= f(\mathbf{u}_{t}^{\dagger}) \\ \mathbf{u}_{t}^{\dagger} &\in \Omega \end{cases}$$

Reality

$$\begin{cases} \frac{\partial \mathbf{u}^{\dagger}_{t}}{\partial t} &= f(\mathbf{u}_{t}^{\dagger}) \\ \mathbf{u}_{t}^{\dagger} &\in \Omega \end{cases}$$

Reality 10,000yr r climate. 1000yr change 100yr variability 10yr El Niño 1yr seasonal 1mon eddes mesoscale and and fronts shorter scale Scale barotropic variability physical-biological 1wk interaction upwelling 1d surface tides internal tides internal waves 1hr inertial motions vertical turbulent 1min mixing surface gravity waves 1sec @ D. Chelton molecular 10km 100km 100km 104km 105km 1cm 10cm 10m 100m 1km Spatial Scale

$$\begin{cases} \frac{\partial \mathbf{u}^{\dagger}_{t}}{\partial t} &= f(\mathbf{u}_{t}^{\dagger}) \\ \mathbf{u}_{t}^{\dagger} &\in \Omega \end{cases}$$

Computer

Reality 10,000yr r climate 1000yr change 100yr variability 10yr El Niño 1yr seasonal 1mon eddes mesoscale and and fronts shorter scale Scale barotropic variability physical-biological 1wk interaction upwelling 1d surface tides internal tides internal waves 1hr inertial motions vertical turbulent 1min surface gravity waves 1sec @ D. Chelton molecular 10km 100km 1000km 104km 105km 1cm 10cm 100m 1km Spatial Scale

$$\begin{cases} \frac{\partial \mathbf{u}^{\dagger}_{t}}{\partial t} &= f(\mathbf{u}_{t}^{\dagger}) \\ \mathbf{u}_{t}^{\dagger} &\in \Omega \end{cases}$$

Computer

$$\begin{cases} \frac{\partial \mathbf{u}_t}{\partial t} &= \mathbf{F}(\mathbf{u}_t) + \mathbf{M}_{\boldsymbol{\theta}}(\cdot) \\ \tau(\mathbf{u}_t^{\dagger}) &= \mathbf{u}_t \in \bar{\Omega} \end{cases}$$

Recall the hybrid model:

$$\begin{cases} \frac{\partial \mathbf{u}_t}{\partial t} &= \mathbf{F}(\mathbf{u}_t) + \mathbf{M}_{\boldsymbol{\theta}}(\cdot) \\ \tau(\mathbf{u}_t^{\dagger}) &= \mathbf{u}_t \in \bar{\Omega} \end{cases}$$

Recall the hybrid model:

Physical core
$$\begin{cases} \frac{\partial \mathbf{u}_t}{\partial t} &= \mathbf{F}(\mathbf{u}_t) + \mathbf{M}_{\boldsymbol{\theta}}(\cdot) \\ \tau(\mathbf{u}_t^{\dagger}) &= \mathbf{u}_t \in \bar{\Omega} \end{cases}$$

Recall the hybrid model:

Physical Sub-model
$$\begin{array}{ccc}
& & & & & \\
& & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& &$$

Recall the hybrid model:

Physical Sub-model
$$\begin{array}{ccc}
& & & & \\
& & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

The model is solved using some appropriate numerical solver:

$$\Psi^{n}(\mathbf{u}_{t}) = \mathbf{u}_{t+nh} \approx \mathbf{u}_{t} + \int_{t_{0}}^{t_{0}+nh} (\mathbf{F}(\mathbf{u}_{t}) + \mathbf{M}_{\boldsymbol{\theta}}(\mathbf{u}_{t})) dt$$

Recall the hybrid model:

Physical Sub-model
$$\begin{array}{ccc}
& & & & \\
& & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

The model is solved using some appropriate numerical solver:

$$\Psi^{n}(\mathbf{u}_{t}) = \mathbf{u}_{t+nh} \approx \mathbf{u}_{t} + \int_{t_{0}}^{t_{0}+nh} (\mathbf{F}(\mathbf{u}_{t}) + \mathbf{M}_{\boldsymbol{\theta}}(\mathbf{u}_{t})) dt$$

• How to calibrate $\boldsymbol{\theta}$ the parameters of the model?

Offline learning:

ullet Define and compute the parameterization term: R_t

- Define and compute the parameterization term: R_t
- θ is estimated by matching the deep learning model M_{θ} to R_t i.e.

- Define and compute the parameterization term: R_t
- $\boldsymbol{\theta}$ is estimated by matching the deep learning model $M_{\boldsymbol{\theta}}$ to R_t i.e.

$$\hat{\theta} = \arg\min_{\theta} \mathcal{L}; \text{ where } \mathcal{L} = Q(\mathbf{M}_{\theta}(\mathbf{u}_t), \mathcal{R}_t, \boldsymbol{\theta})$$

Offline learning:

- Define and compute the parameterization term: R_t
- θ is estimated by matching the deep learning model M_{θ} to R_t i.e.

$$\hat{\theta} = \arg\min_{\theta} \mathcal{L}; \text{ where } \mathcal{L} = Q(\mathbf{M}_{\theta}(\mathbf{u}_t), \mathcal{R}_t, \boldsymbol{\theta})$$

• Once the parameterization term R_t is computed, this method is very simple to test;

- Define and compute the parameterization term: R_t
- θ is estimated by matching the deep learning model M_{θ} to R_t i.e.

$$\hat{\theta} = \arg\min_{\theta} \mathcal{L}; \text{ where } \mathcal{L} = Q(\mathbf{M}_{\theta}(\mathbf{u}_t), \mathcal{R}_t, \boldsymbol{\theta})$$

- Once the parameterization term R_t is computed, this method is very simple to test;
- Used in several state-of-the-art works (example, Guan et al. (2022, 2023));

- Define and compute the parameterization term: R_t
- $\boldsymbol{\theta}$ is estimated by matching the deep learning model $M_{\boldsymbol{\theta}}$ to R_t i.e.

$$\hat{\theta} = \arg\min_{\theta} \mathcal{L}; \text{ where } \mathcal{L} = Q(\mathbf{M}_{\theta}(\mathbf{u}_t), \mathcal{R}_t, \boldsymbol{\theta})$$

- Once the parameterization term R_t is computed, this method is very simple to test;
- Used in several state-of-the-art works (example, Guan et al. (2022, 2023));
- Can be subject to issues when coupling with the solver Frezat et al. (2022); Guan et al. (2022);

- Define and compute the parameterization term: R_t
- $\boldsymbol{\theta}$ is estimated by matching the deep learning model $M_{\boldsymbol{\theta}}$ to R_t i.e.

$$\hat{\theta} = \arg\min_{\theta} \mathcal{L}; \text{ where } \mathcal{L} = Q(\mathbf{M}_{\theta}(\mathbf{u}_t), \mathcal{R}_t, \boldsymbol{\theta})$$

- Once the parameterization term R_t is computed, this method is very simple to test;
- Used in several state-of-the-art works (example, Guan et al. (2022, 2023));
- Can be subject to issues when coupling with the solver Frezat et al. (2022); Guan et al. (2022);
- Just an emulator of a parameterization term need to have access to R_t , do not use historical data

Online learning:

$$\hat{\theta} = \arg\min_{\theta} \mathcal{L}; \text{ where } \mathcal{L} = Q(\mathbf{y}_{t+nh}, \mathbf{g}(\Psi^n(\mathbf{u}_t)), \boldsymbol{\theta})$$

Online learning:

• θ is estimated by matching the numerical integration of the model to some observations y_t i.e.

$$\hat{\theta} = \arg\min_{\theta} \mathcal{L}; \text{ where } \mathcal{L} = Q(\mathbf{y}_{t+nh}, \mathbf{g}(\Psi^n(\mathbf{u}_t)), \boldsymbol{\theta})$$

• Allows for an end-to-end learning;

Online learning:

$$\hat{\theta} = \arg\min_{\theta} \mathcal{L}; \text{ where } \mathcal{L} = Q(\mathbf{y}_{t+nh}, \mathbf{g}(\Psi^n(\mathbf{u}_t)), \boldsymbol{\theta})$$

- Allows for an end-to-end learning;
- (experimental) Better stability Frezat et al. (2022)

Online learning:

$$\hat{\theta} = \arg\min_{\theta} \mathcal{L}; \text{ where } \mathcal{L} = Q(\mathbf{y}_{t+nh}, \mathbf{g}(\Psi^n(\mathbf{u}_t)), \boldsymbol{\theta})$$

- Allows for an end-to-end learning;
- (experimental) Better stability Frezat et al. (2022)
- Need to do back-propagation through the solver

Online learning:

$$\hat{\theta} = \arg\min_{\theta} \mathcal{L}; \text{ where } \mathcal{L} = Q(\mathbf{y}_{t+nh}, \mathbf{g}(\Psi^n(\mathbf{u}_t)), \boldsymbol{\theta})$$

- Allows for an end-to-end learning;
- (experimental) Better stability Frezat et al. (2022)
- Need to do back-propagation through the solver

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}} = \frac{\partial}{\partial \boldsymbol{\theta}} Q(\mathbf{y}_{t+nh}, \mathbf{g}(\boldsymbol{\Psi}^n(\mathbf{u}_t)), \boldsymbol{\theta})$$

Online learning:

$$\hat{\theta} = \arg\min_{\theta} \mathcal{L}; \text{ where } \mathcal{L} = Q(\mathbf{y}_{t+nh}, \mathbf{g}(\Psi^n(\mathbf{u}_t)), \boldsymbol{\theta})$$

- Allows for an end-to-end learning;
- (experimental) Better stability Frezat et al. (2022)
- Need to do back-propagation through the solver

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}} = \frac{\partial}{\partial \boldsymbol{\theta}} Q(\mathbf{y}_{t+nh}, \mathbf{g}(\boldsymbol{\Psi}^{n}(\mathbf{u}_{t})), \boldsymbol{\theta})$$

$$= \underbrace{\frac{\partial Q(\cdot, \cdot, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}}_{\text{Gradient of the regularization}} + \underbrace{\frac{\partial Q(\cdot, \mathbf{g}(\boldsymbol{\Psi}^{n}(\mathbf{u}_{t})), \cdot)}{\partial \mathbf{g}}}_{\text{Gradient of the online cost w.r.t. } \boldsymbol{\Psi}} \underbrace{\frac{\partial \boldsymbol{\Psi}^{n}(\mathbf{u}_{t})}{\partial \boldsymbol{\theta}}}_{\text{Gradient of the solver}}$$

Online learning:

$$\hat{\theta} = \arg\min_{\theta} \mathcal{L}; \text{ where } \mathcal{L} = Q(\mathbf{y}_{t+nh}, \mathbf{g}(\Psi^n(\mathbf{u}_t)), \boldsymbol{\theta})$$

- Allows for an end-to-end learning;
- (experimental) Better stability Frezat et al. (2022)
- Need to do back-propagation through the solver
 - Rewrite the solver in Pytorch?

Online learning:

$$\hat{\theta} = \arg\min_{\theta} \mathcal{L}; \text{ where } \mathcal{L} = Q(\mathbf{y}_{t+nh}, \mathbf{g}(\Psi^n(\mathbf{u}_t)), \boldsymbol{\theta})$$

- Allows for an end-to-end learning;
- (experimental) Better stability Frezat et al. (2022)
- Need to do back-propagation through the solver
 - Rewrite the solver in Pytorch?
 - Differentiable emulators?

Online learning:

$$\hat{\theta} = \arg\min_{\theta} \mathcal{L}; \text{ where } \mathcal{L} = Q(\mathbf{y}_{t+nh}, \mathbf{g}(\Psi^n(\mathbf{u}_t)), \boldsymbol{\theta})$$

- Allows for an end-to-end learning;
- (experimental) Better stability Frezat et al. (2022)
- Need to do back-propagation through the solver
 - Rewrite the solver in Pytorch?
 - Differentiable emulators?
 - Adjoint sensitivity?

Online learning:

$$\hat{\theta} = \arg\min_{\theta} \mathcal{L}; \text{ where } \mathcal{L} = Q(\mathbf{y}_{t+nh}, \mathbf{g}(\Psi^n(\mathbf{u}_t)), \boldsymbol{\theta})$$

- Allows for an end-to-end learning;
- (experimental) Better stability Frezat et al. (2022)
- Need to do back-propagation through the solver
 - Rewrite the solver in Pytorch?
 - Differentiable emulators?
 - Adjoint sensitivity?
 - Derivative free methods?

Online learning of hybrid models Euler Gradient Approximation

• Let us consider an explicit Euler solver Ψ_E , a single step integration using Ψ_E can be written as:

where
$$\mathbf{u}_{t+h} = \Psi(\mathbf{u}_t)$$
 where
$$\Psi_E(\mathbf{u}_t) = \mathbf{u}_t + h(\mathbf{F}(\mathbf{u}_t) + \mathbf{M}_{\boldsymbol{\theta}}(\mathbf{u}_t))$$

• Assuming that the solver Ψ has order $p \ge 1$, we can write for any initial condition:

$$\mathbf{u}_{t+h} = \Psi(\mathbf{u}_t)$$
$$= \Psi_E(\mathbf{u}_t) + O(h^2)$$

Online learning of hybrid models Euler Gradient Approximation

• By using this approximation, we can show that the gradient of the solver can be decomposed as (for a fixed n):

$$\frac{\partial}{\partial \boldsymbol{\theta}} \Psi^{n}(\mathbf{u}_{t}) = \sum_{j=1}^{j=n-1} \left(\prod_{i=1}^{i=n-j} \underbrace{\frac{\partial \Psi(\Psi^{n-i}(\mathbf{u}_{t}))}{\partial \Psi^{n-i}(\mathbf{u}_{t})}}_{\text{Jacobian of the flow}} \right) h \underbrace{\frac{\partial}{\partial \boldsymbol{\theta}} \mathbf{M}_{\boldsymbol{\theta}}(\Psi^{j-1}(\mathbf{u}_{t}))}_{\text{Gradient of the sub-model}} + h \frac{\partial}{\partial \boldsymbol{\theta}} \mathbf{M}_{\boldsymbol{\theta}}(\Psi^{n-1}(\mathbf{u}_{t})) + O(h^{2})$$

- If we approximate the Jacobian (we can use a static/ensemble approximation, a TLM if any), we can compute the gradients only using the gradient of the sub-model;
- And for n fixed, the gradients converge to the true ones quadratically in h;

• The dimensionless governing equations in the vorticity (ω) and stream function (ψ) formulation in a doubly periodic square domain with length $L=2\pi$ are:

$$\frac{\partial \omega_t}{\partial t} + \mathcal{A}(\omega_t, \psi_t) = \frac{1}{\text{Re}} \nabla^2 \omega_t - f - r \omega_t$$
$$\nabla^2 \psi_t = -\omega_t$$

• where $\mathcal{A}(\omega_t, \psi_t)$ r represents the nonlinear advection term:

$$\mathcal{A}(\omega_t, \psi_t) = \frac{\partial \psi_t}{\partial y} \frac{\partial \omega_t}{\partial x} - \frac{\partial \psi_t}{\partial x} \frac{\partial \omega_t}{\partial y}$$

• and f represents a deterministic forcing:

$$f(x,y) = k_f \left[\cos(k_f x) + \cos(k_f y)\right]$$

QG turbulence, LES

• The dimensionless governing equations in the vorticity (ω) and stream function (ψ) formulation in a doubly periodic square domain with length $L=2\pi$ are:

$$\frac{\partial \omega_{t}}{\partial t} + \mathcal{A}(\omega_{t}, \psi_{t}) = \frac{1}{\text{Re}} \nabla^{2} \omega_{t} - f - r \omega_{t}$$

$$\nabla^{2} \psi_{t} = -\omega_{t}$$

$$\frac{\partial \bar{\omega}_{t}}{\partial t} + \mathcal{A}(\bar{\omega}_{t}, \bar{\psi}_{t}) = \frac{1}{\text{Re}} \nabla^{2} \bar{\omega}_{t} - \bar{f} - r \bar{\omega}_{t} + \underbrace{\mathcal{A}(\bar{\omega}_{t}, \bar{\psi}_{t}) - \overline{\mathcal{A}(\omega_{t}, \psi_{t})}}_{\Pi_{t} \approx \mathbf{M}_{\theta}}$$

$$\nabla^{2} \bar{\psi}_{t} = -\bar{\omega}_{t}$$

• Model the subgrid-scale term $\Pi_t \approx \mathbf{M}_{\theta}$

Flow configuration:

- High resolution grid : 1024×1024 .
- Low resolution : 64×64 .
- Re: 20000, r = 0.1, kf = 4;

Tested models:

- Online learning with exact gradient;
- Online learning with approximate gradient;
- Offline learning;
- Dynamic Smagorinsky (DSMAG)

- We proposed a simple gradient estimator for learning online hybrid models;
- Proposed methodology does not rely on a differentiable physical model, and can (in theory) be applied on non-differentiable CFD/GFD codes;
- Can use better Jacobian approximation and can be extended to definition of non additive correction terms;
- Interpretability/constraining the sub-model?
- Multiple (stochastic) sub-models?

Key points and perspectives

- IA can be used to improve models/data
- One of the key points is to formulate the problem we want to solve
- Towards problem standardization, benchmarks based on ocean data?