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Outline

e Geophysical state estimation: models vs observations

* IA in geophysical state estimation and DA:

* Higher resolution interpolation: general framework and applications
* Generative models and data assimilation for modeling dynamical systems
* End-to-end (online) Learning in Hybrid Modeling Systems
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* Understanding of physical
processes
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Geophysical state estimation: models vs observations

e Initialization of the models  Data reconstruction and
interpolation
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Numerical discretization errors

Model bias correction

Choice of some parameterizations

How to increase the predictability

How to model a subset of variables
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* Numerical discretization errors * How to explore these big amounts
* Model bias correction data
* Choice of some parameterizations * How to design new sensing

missions

How to increase the predictability

How to model a subset of variables



IA in geophysical state estimation and DA

Improving geophysical state estimation using
machine learning and Al



IA in geophysical state estimation and DA

* Higher resolution interpolation

* Data driven synergy, emulators



IA in geophysical state estimation and DA

* Point of view from both AT generative models/standard DA schemes for surrogate modeling
Machine learning, data assimilation and uncertainty quantification



IA in geophysical state estimation and DA

e Surrogate modeling
* Accelerating model resolution

* Model tuning and parameterization, hybrid models



IA in geophysical state estimation and DA

== Formulation of higher resolution interpolation with examples
== (Generative models and data assimilation for modeling dynamical systems

== End-to-end Learning of sub-models in Hybrid Modeling Systems



Al for observations

Higher resolution interpolation: general framework and applications

Observationg
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Higher resolution interpolation

Problem statement
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* Easy implementation and testing

« Takes advantage of recent
developments in Al architectures
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* Easy implementation and testing e Uncertainty quantification 7

« Takes advantage of recent * Forecasting applications 7
developments in Al architectures



Higher resolution interpolation

Problem statement
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* Easy implementation and testing e Uncertainty quantification ? — Generative models
« Takes advantage of recent * Forecasting applications 7 — Multitask learning

developments in Al architectures
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Higher resolution interpolation

Turn spatiotemporal interpolation into a Bayesian filtering
problem:

* State Varia,bl{ Zip1 = Mg (2¢) + €4

* Observations x¢ = Hy (Zt) + pi

Inversion scheme

Learning steps: SCNE
(data assimilation)

H(., 2, ¢€)

* Compute the state variable using an
inversion scheme (e.g. Ensemble Kalman,
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Xi_ ¥ X4 Xt+h
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Turn spatiotemporal interpolation into a Bayesian filtering
problem:
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Higher resolution interpolation

Turn spatiotemporal interpolation into a Bayesian filtering
problem:

* State Varia,bl{ Zip1 = Mg (2¢) + €4

* Observations x¢ = Hy (Zt) + [y

Inversion scheme

Learning steps:
g H(., Q, €) (data assimilation)

* Compute the state variable using an
inversion scheme (e.g. Ensemble Kalman,

4D-Var) Z,

 Compute the gap free observations using
the forward model X; = H(Z;)

Xt—h X Xt+h

* Naturally deals with missing data
* Can do forecast

Minimize |x; — H(Z;)] * Probabilistic formulation

Maximize p(x;)



Higher resolution interpolation,

examples

Interpolation results of SLA data in med
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Al for Data Assimilation

Generative models and data assimilation for modeling dynamical systems

Datd assimﬂatj%
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Problem statement

* Let us start from the same state space model and assume we want to do
interpolation/forecast etc.

* We showed previously how to use DA to
solve interpolation /forecasting problems

Inversion scheme

H(., Q2 €) (data assimilation)
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Generative models and data assimilation

Problem statement

* Let us start from the same state space model and assume we want to do
interpolation/forecast etc.

* We showed previously how to use DA to
solve interpolation /forecasting problems

Inversion scheme

H(., Q2 €) (data assimilation)

 We can use ideas from generative
modeling to do the same tasks P

Xi_h X+ Xt+h
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Generative models and data assimilation

Problem statement

* Let us start from the same state space model and assume we want to do
interpolation/forecast etc.

* We showed previously how to use DA to
solve interpolation /forecasting problems

 We can use ideas from generative
modeling to do the same tasks

Xt—h Xt Xit+h

* For instance, we can maximize the evidence lower bound of the SSM:

log po(Xe:tn ) = —Eq, [108 g (- | Xto:tn )] + Eqy (108 po (- Xto:tn )] + DL (g (- | Xeo:tn )IDo(- | Xtg:tn )

A

o

Model evidence Marginal log Likelihood (ELBO) Intratable, > 0



Generative models and data assimilation

Application example, Learning dynamical systems from noisy/partial
observations

Lorenz 63 system

| |
N - o - ~

Training both the:

« Dynamical model

* The noise variances
* The Filter
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Application example, Learning dynamical systems from noisy/partial
observations
Lorenz 63 system An example of the first dimension of the L63 system

— b seq reconstructed by the inference module of our model. The
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Generative models and data assimilation

Application example, Learning dynamical systems from noisy/partial
observations

An example of the first dimension of the L63 system
reconstructed by the inference module of our model. The
observations are noisy (r = 33%) and irregularly sampled
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Generative models and data assimilation

Ongoing works on further links between DA and generative models

logpﬂ(xtnltwl —= _E% [log Qt,ﬁ(' | th:ti\?)] Vg qua [logpﬁ('axtnitjv )] +PKL (qu( ‘ Xl‘-nltw)”pﬁ'(' ‘ anifN))
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Model evidence Marginal log Likelihood (ELBO) Intratable, > 0

e Given the parameters of the SSM, than maximizing the ELBO gives us a filter

* If the filter converges, we even have an estimate of the model evidence (can be used for model
selection)

* Benchmark this framework against standard DA for applications such as filtering, smoothing,
and parameters/evidence estimation



Al for Numerical Models

End-to-end Learning of sub-models in Hybrid Modeling Systems
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Online learning of hybrid models
Tuning geophysical models
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Tuning geophysical models
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Online learning of hybrid models
Tuning geophysical models

Reality Computer
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Online learning of hybrid models
Tuning geophysical models
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Online learning of hybrid models
Tuning geophysical models
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Online learning of hybrid models
Training hybrid models

Recall the hybrid model:

F(ut) + My (+)
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Online learning of hybrid models
Training hybrid models

Recall the hybrid model: Physical
core

%" — :i:_"(ut)—l—Mg(-)
T(ui) = uwel



Online learning of hybrid models
Training hybrid models

Recall the hybrid model: Phgsigal Sub-model
! |

o = F(u;) + Mp (")
T(ui) = u; €0
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Training hybrid models
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Online learning of hybrid models
Training hybrid models

Recall the hybrid model: Physical SUb-IIﬂOdel
core |
Gu: = F(u)+ Mp(")
T(UI) = uw €N

The model is solved using some appropriate numerical solver:

tO+nh
U e) = uppon Mt [ (F(ur) + Mo (ur))d

to

« How to calibrate @ the parameters of the model ?
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Online learning of hybrid models
Training hybrid models, offline vs online learning

Offline learning:

e Define and compute the parameterization term: R;
e 0 is estimated by matching the deep learning model My to R; i.e.

6 = arg mgin L; where L = Q(Mg(u¢), R¢,0)

Once the parameterization term R; is computed, this method is very simple to test;

Used in several state-of-the-art works (example, Guan et al. (2022, 2023));

Can be subject to issues when coupling with the solver Frezat et al. (2022); Guan et al. (2022);
Just an emulator of a parameterization term need to have access to Ry, do not use historical data
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Training hybrid models, offline vs online learning

Online learning:

e 0 is estimated by matching the numerical integration of the model to some observations y; i.e.
0 = arg mgin L; where £ = Q(Yi1npn,g(P"(ut)), 0)

* Allows for an end-to-end learning ;
* (experimental) Better stability Frezat et al. (2022)
 Need to do back-propagation through the solver
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Online learning of hybrid models
Training hybrid models, offline vs online learning

Online learning:

e 0 is estimated by matching the numerical integration of the model to some observations y; i.e.
0 = arg mgin L; where £ = Q(Yi1npn,g(P"(ut)), 0)

* Allows for an end-to-end learning ;
* (experimental) Better stability Frezat et al. (2022)
 Need to do back-propagation through the solver
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regularization cost w.r.t. W
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Online learning of hybrid models
Training hybrid models, offline vs online learning

Online learning:

e 0 is estimated by matching the numerical integration of the model to some observations y; i.e.
0 = arg mgin L; where £ = Q(Yi1npn,g(P"(ut)), 0)

* Allows for an end-to-end learning ;
* (experimental) Better stability Frezat et al. (2022)
 Need to do back-propagation through the solver

* Rewrite the solver in Pytorch 7

« Differentiable emulators 7

* Adjoint sensitivity 7

e Derivative free methods 7



Online learning of hybrid models

Euler Gradient Approximation

* Let us consider an explicit Euler solver W, a single step integration using W can be written as:

Ui p = ‘P(Ut)
where

V() = vy + h(F(u;) + Mg(uy))

* Assuming that the solver ¥ has order p 2 1, we can write for any initial condition:

Ui pp — ‘I’(U—t)
= Up(u) + O(h?)



Online learning of hybrid models

Euler Gradient Approximation

By using this approximation, we can show that the gradient of the solver can be decomposed as
(for a fixed n):

1=n—1 i1=n—j

_\Pn (uz) = Z ( H 8\21111::: uf))))h@agMQ(\pj_l(ut)) +h% Mo (V"™ (uy)) + O(hz)

=1 " _ -
Gradient of the sub-model

Jac ubum of the flow

If we approximate the Jacobian (we can use a static/ensemble approximation, a TLM if any), we
can compute the gradients only using the gradient of the sub-model;
And for n fixed, the gradients converge to the true ones quadratically in h;



QG turbulence

» The dimensionless governing equations in the vorticity () and stream function (¢) formulation
in a doubly periodic square domain with length L = 2m are:

Ow 1
(9_; + A(wt, wt) = gvadt == f — TWt

qufr)t = —Wy

* where A(wy, ¥ )1 represents the nonlinear advection term:

e and f represents a deterministic forcing:

f(z,y) = ky [cos (ksz) + cos (kyy)]



QG turbulence, LES

* The dimensionless governing equations in the vorticity (») and stream function (V) formulation
in a doubly periodic square domain with length L = 2m are:

Ow 1 . 0w = 1 _ _
8_; o A(wta lpt) — gvgwt - f — TWt ( ) (r)—tt e A(Qt, 'l,[)t) — EVQ(L}, — f — ?“(L’;g - \.A(C.Df Q/Jt) : A(wt, ’(pf)J
VQ'l/)t = —W ~ II;~Mg
V39 = —i

* Model the subgrid-scale term 11,~Mj,



QG turbulence

Flow configuration:

* High resolution grid : 1024 x 1024.
* Low resolution : 64 x 64.

* Re : 20000, r = 0.1, kf = 4;

Tested models:
* Online learning with exact gradient;
* Online learning with approximate gradient;

« Offline learning;
e Dynamic Smagorinsky (DSMAG)



QG turbulence
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Online, exact gradient

Offline DSMAG

approximation

Filtered DNS




QG turbulence
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QG turbulence

 We proposed a simple gradient estimator for learning online hybrid models;

* Proposed methodology does not rely on a differentiable physical model, and can (in theory) be
applied on non-differentiable CFD/GFD codes;

 Can use better Jacobian approximation and can be extended to definition of non additive
correction terms;

* Interpretability /constraining the sub-model ?
e Multiple (stochastic) sub-models ?



Key points and perspectives

* TA can be used to improve models/data
* One of the key points is to formulate the problem we want to solve

* Towards problem standardization, benchmarks based on ocean data ?



