

machine learning et données BGC-ARgo: produits opérationnels et

R. Sauzede

P.R. Renosh, L. Terrats, J. Uitz and H. Claustre

Prior to the turn of the 21st century, comprehensive *in-situ* ocean observations were difficult to obtain (mainly from ships and moored buoys):

- bias to the Northern hemisphere
- large spatial gaps because of transect lines
- seasonal bias
- sparse data for high latitudes
- → critical for operational oceanography

Wong et al., 2020

+pH

 $(+ \sim 25,000 / year)$

(+ ~12,000 / year)

~ 130,000 profiles of Chla + POC

ATGG ATGG

(Claustre et al., 2020)

→ Take advantage of the power of ML and the growing amount of BGC-Argo profiling floats data with the main objective to finally provide useful and easy usable observation-based

products

Observation-based products from BGC-Argo

LOV/IMEV develops 2 different type of observation-based products:

BGC-Argo 'augmented' variables non or poorly measured from profiling floats

- BGC-Argo upscaling → 3D gap-filled gridded products

Some of these products are **operationally** delivered to the end-users through **Copernicus Marine Service**, some others are still in development

Copernicus Marine Service - MULTIOBS TAC

The Ocean Multi Observations TAC of Copernicus Marine Service (MULTIOBS)

- provides global qualified ocean multi-observations products
- products based on observations (satellite and in situ) and data fusion techniques
- Near Real Time, Multi Year products and Ocean Monitoring Indicators

https://marine.copernicus.eu/fr

SOCA methods to estimate bio-optical properties

SOCA for Satellite Ocean-Color merged with Argo data to vertical distribution of bio-optical properties

- Sauzede et al., 2010
- Machine learning: neural network (Multi-Layer Perceptron)
- BGC-Argo data used as reference values to train and validate algorithm (~4,000 in 2016 and 55,000 profiles now)
- Concurrent profiles of T/S and bio-optical properties (b_{bp}+Chla) collected by BGC-Argo floats concomitant with satellite products
- Neural network (Multi-Layer Perceptron)
- Consequent updates from SOCA method published in 2016 to improve the performance (Sauzède et al., in prep.)

SOCA methods to estimate bio-optical properties 7

~55,000 satellite/BGC-Argo matchups → Database representative of the global ocean

Global accuracies for SOCA retrieval:

b_{bp}: ~10% Chla: ~30%

perational Copernicus marine service 4D gridded products

Global 4D gridded POC (+b_{bp}) and Chl from Copernicus Marine Service :

MULTIOBS_GLO_BIO_BGC_3D_REP_015_010 product from MULTIOBS TAC

• Horizontal resolution: $1/4^{\circ}$

Vertical resolution: 36 vertical depth levels from surface to 100 depth

Temporal resolution: - Weekly fields from 1998 to 2022

- Monthly climatological fields

→ Major update of the product in next November 2024 (Sauzède et al. in prep.)

New insights from Observation-based products 9

June climatology of the SOCA product:

Longitudinal transect at 170°W (Pacific) 30°W (Atlantic) and 70°E (Indian)

Sauzède et al., in prep.

New insights from Observation-based products 10

Regional focus: carbon export in the North Atlantic

Sauzède et al., in prep.

- **Gradient from North to South** reveals varying bloom onset across regions
- **Irminger Sea** exhibits a more prolonged bloom characterized by high phytoplankton biomass and the high b_{bo} signature in the surface layer suggests significant coccolithophore concentration \rightarrow sustained and notably high b_{bn} signature in deeper layers
- **SOCA** enables the visualization of **the scale** of higher export (deep b_{bo} signature) at the regional level

SOCA-based workflow to evaluate BGC-ARgo dataset 11

A machine learning-based workflow to evaluate the improvement of CHLA quality using new RT slopes.

SOCA TO REFINE BBP/POC RELATIONSHIPS

 \rightarrow By confronting SOCA-derived b_{bp}(700) and POC in situ measurements matched with satellite data, a new **b_{bp}(700)/POC relationship** has been developed:

$$POC = 38687 * b_{bp}^{0.95}$$

Use of the ~8,000 POC stations (Evers-King et al., 2017)

Applications and perspectives 13

-100

In addition to the new scientific insights that offer these 4D-BGC observation-based products, they represent a most valuable source of data useful:

- For data assimilation, initialization/validation of biogeochemical models
- For the **quality control** of BGC-Argo float observations
- \rightarrow e.g. audit for b_{bp} released since June 2021 to help flagging anomalous profiles in the BGC-Argo database by comparison between BGC-Argo and SOCAreference data
 - Helping in the BGC-Argo data management
- → e.g. NPQ correction from SOCA-light estimations for floats non equipped with a radiometer or development of a new map of slopes of fluo/Chla at a global scale

Ongoing development of SOCA for other properties measured or estimated from BGC-Argo

→ SOCA-PFT and SOCA-Carbon

→ ~1,000 profiles (1%) flagged as anomalous

longitude

100

ftp://ftp.mbari.org/pub/BGC_argo_audits/BBP700

Fluo/Chla slope for the Chla RT adjustment in BGC-Argo

4D-BGC SCOR WORKING GROUP

SCOR WG #168 4D-BGC: Coordinating the Development of Gridded Four-Dimensional Data Products from Biogeochemical Argo Observations

- 1. **Establish connections** among 4D-BGC product developers, observational communities and data synthesis efforts, and end-user communities
- **2. Compile an inventory** of 4D-BGC products, and suggests relevant applications
- **3. Synthesize available estimates**, variabilities, and trends of key biogeochemical processes that can be refined by 4D-BGC products, and identify actions to refine quantifications
- **4. Develop recommendations** to create, distribute, and dynamically update 4D-BGC products, as well as strategies to estimate uncertainties
- **5. Build capacity** within the oceanographic community, especially among early career researchers and within underrepresented groups

4D-BGC SCOR WORKING GROUP

SCOR WG #168 4D-BGC: Coordinating the Development of Gridded Four-Dimensional Data Products from Biogeochemical Argo Observations

- **I. Establish connections** among 4D-BGC product developers, observational communities and data synthesis efforts, and end-user communities
- **2. Compile an inventory** of 4D-BGC products, and suggests relevant applications
- **3. Synthesize available estimates**, variabilities, and trends of key biogeochemical processes that can be refined by 4D-BGC products, and identify actions to refine quantifications
- **4. Develop recommendations** to create, distribute, and dynamically update 4D-BGC products, as well as strategies to estimate uncertainties
- **5. Build capacity** within the oceanographic community, especially among early career researchers and within underrepresented groups

Thank you Questions?

contact: raphaelle.sauzede@imev-mer.fr

