

Evaluation of 12 algorithms to estimate Suspended Particulate Matter from OLCI over European coastal waters

Corentin SUBIRADE, Cédric Jamet, Manh Tran Duy, Vincent Vantrepotte, Bing Han

> CES ODATIS Couleur de l'eau 13th March 2024

Introduction

<u>PhD subject</u> : spatio-temporal variability of coastal waters quality in Europe and China using **Sentinel-3** and **Haiyang-1** satellites

River plumes in Bangladesh

Sentinel-3

Haiyang-1

<u>Objectives :</u>

- Validate SPM models over an in-situ dataset
- Perform a matchup analysis
- Compare SPM models mapping capacities

River plumes in Bangladesh

SPM models tested :

- Han et al. (2016) 2 versions
- Nechad et al. (2010)
- SOLID from Balasubramanian et al. (2020)
- MDN from Pahlevan et al. (2020)
- Novoa et al. (2017)
- Jiang et al. (2021)
- Petus et al. (2010)
- Siswanto et al. (2011)
- Gernez et al. (2017)
- Wozniak et al (2016)
- TSM_NN (standard product from EUMETSAT)

1. Models validation using the GLORIA dataset

Models applied to 767 in-situ quality-controlled Rrs spectra, paired with SPM measurements

GLORIA in-situ paired Rrs/SPM measurements selected

Réunion CES ODATIS Couleur de l'eau - 13/03/2024 - Corentin Subirade

1. Models validation using the GLORIA dataset

Estimated SPM using in-situ GLORIA Rrs vs. in-situ SPM for 11 models

Models normalized metrics and scores

- → Jiang21 outperforms the other models, showing the best Error, Bias and R²
- → Han16 and Han16_NIR are ranked 5th and 4th, respectively

2. Models validation through a matchup exercise

Satellite data : OLCI L2 standard EUMETSAT product (IPF procedure for atmospheric correction)

SOMLIT in-situ dataset : French coastal monitoring network used for matchup analysis (150 matchups)

2. Models validation through a matchup exercise

Models normalized metrics and scores

- → Novoa17 retrieves SPM with the best accuracy and precision, but saturates for low concentrations
- → Jiang21 shows the largest dynamic range, making it suitable for large scale studies

3. Models capabilities in SPM mapping

CONTRACTOR CONTRACTOR OF CONTA

SPM maps for the 12 models for the same OLCI-B image (25/12/2019, Rhône River plume)

Réunion CES ODATIS Couleur de l'eau - 13/03/2024 - Corentin Subirade

3. Models capabilities in SPM mapping

- Large differences in SPM magnitude between the models for high and low concentrations (~ 1 order of magnitude)
- Evidence for **noise presence for low SPM** for some models

SPM section for 12 models across the Rhône River plume (25/12/2019)

3. Differences between SPM derived from OLCI and MODIS standard products

- OLCI resolves smaller scales features with its 300m resolution
- MODIS red band saturate for high turbidity and/or Bright Pixel mask raised

OLCI (300 m) and MODIS (1 km) SPM (Han16) for Oléron and Ré Islands, France, 15/03/2020

Conclusions

- Novoa17 and Jiang21 outperform the other models in terms of statistics
- However, Novoa17 saturates for low SPM concentrations
- Jiang21 presents the best mapping capabilities (larger dynamic range)
- OLCI present advantages compared to MODIS in turbid coastal regions

SPM concentrations in the Rhône River plume on 25/12/2019 from OLCI-B standard product

Perspectives

- 1. **Optical classification** of coastal waters : method from Tran et al. 2023 (in revision)
- 2. Application of the best **bio-optical algorithms** by class (MBR, Red/NIR, MDN) to estimate chlorophyll-a concentration
- 3. Validation of SPM products from in-situ measurements
- 4. Study of **spatio-temporal variability of SPM** : trend, seasonality, residuals (Census X11, melin and Vantrepotte 2011)
- 5. Definition of **hot-spots**

- 6. Explanation of changes in water quality : **environmental and anthropic forcings** (Granger causality and random forests)
- 7. Comparison with other time series (MERIS, MODIS, GlobColour, CCI)
- 8. Investigation of other parameters (Chla et Kd)

Relative contributions of the Seasonal, trend and irregular terms to SPM variance

Thank you for your attention

Backup

• **Median Symmetric Accuracy** ("Error") : a percentage error equally penalizing over and under-estimations (while MdAPE doesn't)

$$Error = 100 \times (10^{median(|log_{10}(SPM^{est}/SPM^{obs})|)} - 1)$$

• **Symmetric Signed Percentage Bias** ("Bias") : a percentage bias that maintains symmetry between over and under-estimations

 $Bias = 100 \times sign(MdLQ) \times (10^{|MdLQ|} - 1)$

 $MdLQ = median(log_{10}(SPM^{est}/SPM^{obs}))$

• Root Mean Square Logarithmic Error (RMSLE)

$$RMSLE = \sqrt{\frac{\sum_{i=1}^{n} (log_{10}(SPM_{i}^{\text{est}}) - log_{10}(SPM_{i}^{\text{obs}}))^{2}}{n}}$$

• The **Slope** and **R**² from a type II linear regression :

$$log_{10}(SPM^{est}) = slope \times log_{10}(SPM^{obs}) + intercept$$

• All 5 metrics are normalized based on the min and max values for all models :

$$Error_{norm}(i) = \frac{Error(i) - max(Error(i)_{i=1,k})}{min(Error(i)_{i=1,k}) - max(Error(i)_{i=1,k})}$$

• The score for a model i is computed by summing its normalized metrics :

 $Score(i) = Bias_{norm}(i) + Error_{norm}(i) + RMSLE_{norm}(i) + Slope_{norm}(i) + R_{norm}^{2}(i)$

Methods : Matchup protocol

- 3x3 windows centered on the in-situ measurement
- At least 5/9 valid pixels
- A Coefficient of Variability (CV) of Rrs(560) < 20%
- 3h difference between measurement and satellite overpass
- OLCI Spetra with at least on negative Rrs value removed

Models sensitivity to atmospheric correction procedure

Differences between OLCI-A and OLCI-B

- 10 common matchups between OLCI-A and OLCI-B for the SOMLIT dataset
- Jiang21 gives more similar results with S3A and S3B than the other 3 models

Common matchups between OLCI-A and OLCI-B for 4 different models

3. Models capabilities in SPM mapping

CONTRACTOR CONTRACTOR OF CONTA

SPM maps for the 12 models for the SAME OLCI image (15/03/2020, Îles d'Oléron et de Ré)

 Large differences in SPM magnitude between the models for high and low concentrations (~ 1 order of magnitude)

SPM section for 12 models across the Rhône River plume (25/12/2019)

SPM OLCI time series decomposition with Census X-11

- Variability of SPM in European coastal waters investigated
- Hot spots to be defined based on those results

23

SPM climatology in Europe from OLCI (Han16)

CONTRACTOR CONTRACTOR OF CONTA

