delareberele ANR PRC DREAM (20

Deep leaRning approaches to Elucidate phytoplAnkton cliMate induced variability

Aim: To deconvolve/identify the phytoplankton variability due to natural climate cycles from the antropogenic trends

- Radiometric observations → limited in time
- In situ observations → data too sparse (and limited in time)
- Physical-biogeochemical numerical modelling
 - → uncertainties in processes & model parametrization of biogeochemical parameters

Difficulties to solve regime shift

anr approximate ANR PRC DREAM (2023-2027)

Deep leaRning approaches to Elucidate phytoplAnkton cliMate induced variability

Deep learning approaches to Elucidate phytoplankton cliMate induced variability

WP1 Improving the deep learning architectures through several emulators:

Data-driven: Y = f(X). Y=Chl, X= predictors

ODE/PDE: $\partial_t Y = f(\partial_t X)$.; $\partial_t Y = f(\partial_t X, \partial_t Y)$...

WP2 Investigate Chl & PFT low-frequency variability & antropogenic trends and related physical processes at global scale

From radiometric obs. past multi-decadal reconstruction at global scale.

WP2bis Elucidating abiotic and phyto-zooplankton inter-specific relationships at regional scale (an possibly global)

From in situ obs. in contrasted BGC environment: HOT, Californian upwelling, North Atl.

WP3 Assessing phytoplankton response to future climate changes and related uncertainties

From ESM.