





### 2022 DRAGON 5 SYMPOSIUM

MID-TERM RESULTS REPORTING

17-21 OCTOBER 2022



VALIDATION OF OLCI AND COCTS/CZI PRODUCTS AND THEIR POTENTIAL UTILIZATION IN MONITORING OF THE DYNAMIC AND QUALITY OF THE CHINESE AND EUROPEAN COASTAL WATERS



# Dragon 5 Mid-term Results Project



ID. 59053

**PROJECT TITLE:** Validation of OLCI and COCTS/CZI products and their potential utilization in monitoring of the dynamic and quality of the Chinese and European coastal waters

PRINCIPAL INVESTIGATORS: BING HAN DR. CÉDRIC JAMET

NOTC (CHINA) LOG (FRANCE)

CO-AUTHORS: JIANHUA ZHU, DI JIA, KAI GUO; NOTC (CHINA)

XAVIER MÉRIAUX, HUBERT LOISEL; LOG (FRANCE)

CHAOFEI MA, JIANQIANG LIU; NSOAS(CHINA)

PRESENTED BY: BING HAN, NOTC(CHINA)







## Objectives



- (1) Characterization of the error budgets of officially distributed products of OLCI onboard Sentinel 3 satellites and COCTS/CZI onboard HY-1 satellites in coastal waters around China and Europe, e.g., Yellow Sea in China, English Channel in Europe, French Guiana in South America.
- (2) Examination of the **consistency between OLCI and COCTS/CZI**, and among other ocean color sensors in these waters.
- (3) Development and refinement **regional algorithms** to accurately retrieve marine environment parameters (optical and biogeochemical) in these regions of interest.
- (4) **Utilization of OLCI and COCTS/CZI products** to monitor the dynamic and quality of the Chinese and European coastal waters.







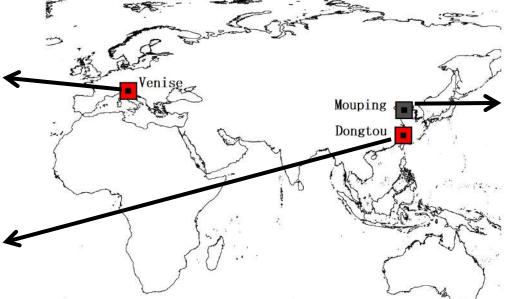


(1) In-situ data: automatic measurements by SeaPRISM (CIMEL Inc., France) sun photometer operationally deployed in AERONET-OC

Operated by JRC, EU Venise Adriatic Sea, Europe

China Operated by NSOAS, MNR, China East Sea, Dongtou

Mouping Yellow Sea, China Operated by NSOAS, MNR, China




Venise















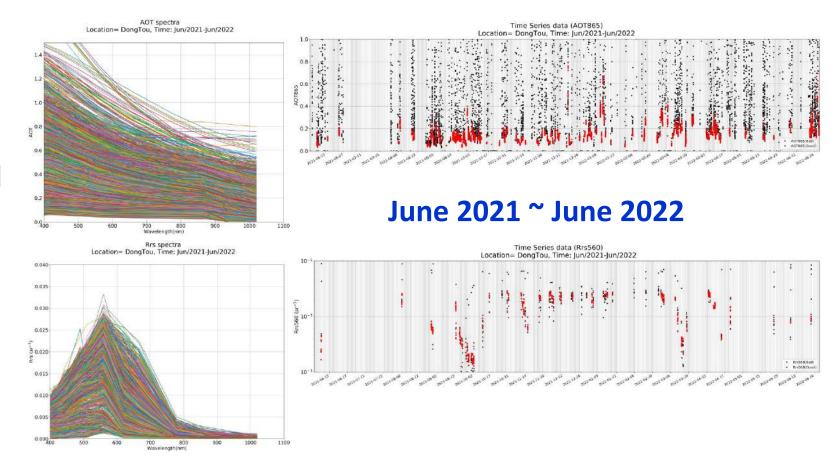
**Mouping** 





**Dongtou** 










- (1) In-situ data
- Dongtou site locates in coastal waters around the East China Sea
- ~30km away from mainland
- ~25m deep
- SeaPRISM ~15m above surface (offshore platform)
- Since March 2019

**Reference:** "G.Zibordi et al. A Network for Standardized Ocean Color Validation Measurements. Eos Transactions, 87: 293, 297, 2006." See also <a href="mailto:aeronet.gsfc.nasa.gov">aeronet.gsfc.nasa.gov</a>









#### (1) Validation Activities - Ongoing

#### **Dongtou, East China Sea**

#### Second Year (Jun/2021 - Jun/2022)

### OLCI/Sentinel 3A ---- L2 FR NR



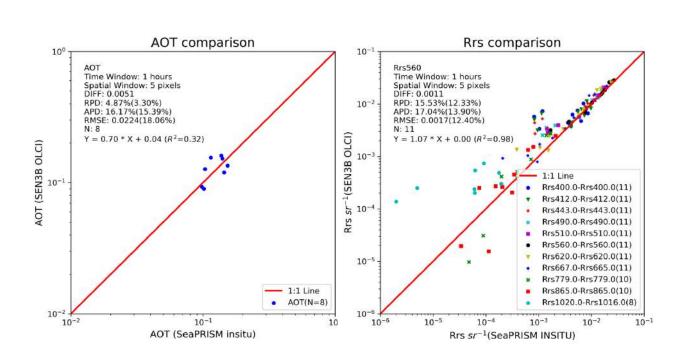
| 10° T                                                                                     | Rrs comparison                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| APD: 52.71%(39.32%) RMSE: 0.0627(60.65%) N: 11 Y = 0.79 * X + 0.07 (R <sup>2</sup> =0.22) | Rrs560 Time Window: 1 hours Spatial Window: 5 pixels DIFF: -0.0009 RPD: 1.97%(0.85%) APD: 10.94%(10.63%) RMSE: 0.0029(13.97%) N: 14 Y = 0.83 * X + 0.00 (R <sup>2</sup> =0.94) |
| 10-1 - SEN3A                                                                              | 1:1 Line<br>Rrs400.0-Rrs400.0(14)<br>Rrs412.0-Rrs412.0(14)                                                                                                                     |
| Rrs sr                                                                                    | Rrs443.0-Rrs443.0(14)  Rrs490.0-Rrs490.0(14)  Rrs510.0-Rrs510.0(14)                                                                                                            |
|                                                                                           | Rrs560.0-Rrs560.0(14) Rrs620.0-Rrs620.0(14) Rrs667.0-Rrs665.0(14)                                                                                                              |
| 1:1 Line • AOT(N=11)                                                                      | * Rrs779.0-(Rrs779.0(13) Rrs865.0-Rrs865.0(14) Rrs1020.0-Rrs1016.0(12)                                                                                                         |

| Product         | RPD    | APD    | N  |
|-----------------|--------|--------|----|
| Rrs400-Rrs400   | 29.9%  | 47.8%  | 14 |
| Rrs412-Rrs412   | 29.8%  | 46.1%  | 14 |
| Rrs443-Rrs443   | 23.8%  | 32.8%  | 14 |
| Rrs490-Rrs490   | 9.9%   | 15.5%  | 14 |
| Rrs510-Rrs510   | 8.0%   | 13.7%  | 14 |
| Rrs560-Rrs560   | 2.0%   | 10.9%  | 14 |
| Rrs620-Rrs620   | 8.9%   | 23.4%  | 14 |
| Rrs665-Rrs667   | 2.6%   | 21.4%  | 14 |
| Rrs779-Rrs779   | -1.1%  | 42.0%  | 13 |
| Rrs865-Rrs865   | 20.2%  | 69.7%  | 14 |
| Rrs1016-Rrs1020 | 180.8% | 238.8% | 12 |
| AOT             | 48.9%  | 52.7%  | 11 |
| Chla            | -82.9% | 82.9%  | 14 |
|                 |        |        | LO |








### (1) Validation Activities - Ongoing

#### Dongtou, East China Sea

#### **Second Year (Jun/2021 – Jun/2022)**





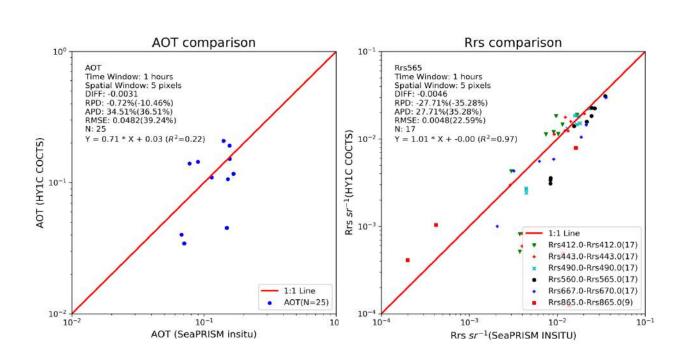


| Product         | RPD     | APD     | N  |
|-----------------|---------|---------|----|
| Rrs400-Rrs400   | 129.5%  | 139.6%  | 11 |
| Rrs412-Rrs412   | 116.6%  | 124.4%  | 11 |
| Rrs443-Rrs443   | 96.6%   | 96.9%   | 11 |
| Rrs490-Rrs490   | 38.9%   | 39.3%   | 11 |
| Rrs510-Rrs510   | 31.3%   | 31.7%   | 11 |
| Rrs560-Rrs560   | 15.5%   | 17.0%   | 11 |
| Rrs620-Rrs620   | 41.2%   | 43.7%   | 11 |
| Rrs665-Rrs667   | 56.1%   | 59.1%   | 11 |
| Rrs779-Rrs779   | 18.9%   | 48.7%   | 10 |
| Rrs865-Rrs865   | 42.2%   | 75.0%   | 10 |
| Rrs1016-Rrs1020 | 1741.6% | 1741.6% | 8  |
| AOT             | 4.9%    | 16.2%   | 8  |
| Chla            | -80.1%  | 80.1%   | 11 |








#### (1) Validation Activities - Ongoing

#### Dongtou, East China Sea

#### **Second Year (Jun/2021 – Jun/2022)**



#### COCTS/Haiyang 1C ---- L2A



| Product       | RPD    | APD   | N* |
|---------------|--------|-------|----|
| Rrs412-Rrs412 | 20.2%  | 39.6% | 17 |
| Rrs443-Rrs443 | -4.1%  | 19.9% | 17 |
| Rrs490-Rrs490 | -12.5% | 17.8% | 17 |
| Rrs565-Rrs560 | -27.7% | 27.7% | 17 |
| Rrs670-Rrs667 | -36.0% | 40.0% | 17 |
| Rrs865-Rrs865 | -10.2% | 99.3% | 9  |
| AOT           | -0.7%  | 34.5% | 25 |

\*Match-up numbers do not match those in the figure because of duplicate COCTS scenes







### (3) Summary

- EO products from both ESA (Sentinel 3A/3B) and China (Haiyang 1C/1D) are validated with automatic measurements by SeaPRISM deployed in coastal waters around the East China Sea and the Adriatic Sea in Europe
- ☐ Sentinel 3A slightly outperforms Sentinel 3B in both East China Sea and Adriatic Sea
- More scatters in COCTS products that in that of OLCI and MODIS products
- L2B products from COCTS/Haiyang 1D seems problematic in both the East China Sea and the Adriatic Sea Sea (some scenes)
- ☐ In the East China Sea, good consistency between OLCI/Sentinel 3A/3B and MODIS/TERRA except small amount of match-ups, however, AOT of OLCI tends to be higher than MODIS;

  Rrs412 and AOT of COCTS/Haiyang 1C tends to be lower than MODIS, however, COCTS/Haiyang 1D shows low consistency with MODIS/Terra.
- ☐ The same seems true for the case of the Adriatic Sea, both OLCI and COCTS.







### **Future Plans**



#### Schedule(cont.):

□ July 2023-June 2024

(1) Develop special products for COCTS/OLCI and/or CZI/MSI in special coastal waters

(2)Description of the dynamics and quality of Chinese and European coastal waters: PhD thesis Corentin Subirdade (ESA/ULCO)

**□ July 2024-December 2024** 

(1)Summary





# Thanks for your attention







# Besoins



- Mise à disposition données S3 sur France et Europe
- Moyen de calcul et de stockage
- Possibilité d'implémenter des algorithmes
- BESOINS de type ICARE






### (2) EO Data (Ocean Color)

- Rrs
- AOT
- Chla (chlorophyll a)

|   | NO. | SeaPRISM<br>@Dongtou |     | OLCI | COCTS | MODIS | THE REAL PROPERTY AND ADDRESS OF THE PARTY AND |
|---|-----|----------------------|-----|------|-------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ĺ | 1   | 400                  |     | 400  |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 2   | 412                  | 412 | 412  | 412   | 412   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 3   | 443                  | 443 | 443  | 443   | 443   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 4   |                      |     |      |       | 469   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 5   | 490                  | 490 | 490  | 490   | 488   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 6   | 510                  |     | 510  | 520   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 7   |                      | 532 |      |       | 531   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | 8   |                      |     |      |       | 547   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 9   | 560                  | 551 | 560  | 565   | 555   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 10  | 620                  |     | 620  |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 11  |                      |     |      |       | 645   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 12  | 667                  | 667 | 665  | 670   | 667   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 13  |                      |     | 674  |       | 678   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 14  |                      |     | 682  |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 15  |                      |     | 709  |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 16  |                      |     | 754  | 750   |       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | 17  | 779                  |     | 779  |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 18  | 865                  | 870 | 865  | 865   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |













#### (2) EO Data (Ocean Color)

OLCI/Sentinel 3A/3B (Feb 16, 2016 / Apr 25 2018) ~ Local 10:00

L2 Full Resolution/Near-Realtime

16 spectral bands in VIS-NIR

300m spatial resolution, global coverage (~1270km swath)

COCTS/Haiyang 1C/1D (Sep 7, 2018 / Jun 11, 2020) ~Local 10:30/13:30

L2A, L2B

8 spectral bands in VIS-NIR

1000m spatial resolution, global coverage (~2900km swath)

MODIS/TERRA (Dec 18, 1999) ~Local 10:30

L2A, L2B

8 spectral bands in VIS-NIR

1200m spatial resolution, global coverage (~2330km swath)

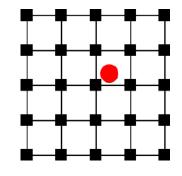








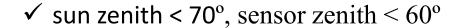





### (4) Validation Protocol -- Math-up and Statistics

#### In-situ data vs EO data (validation)

#### Match-up criteria


- ✓ Time window: 1 hour
- ✓ Spatial window: 5\*5 pixels
- ✓ Percentage of valid pixels: >50%
- ✓ Spatial Homogeneity: CV < 0.3
- ✓ sun zenith and sensor zenith checked
- ✓ Product flags checked
- ✓ Average over defined box



# EO data vs EO data (consistency check)

#### Match-up criteria

- ✓ Time window: 1 hour
- ✓ Spatial window: 5\*5 pixels
- ✓ Percentage of valid pixels: >50%
- ✓ Spatial Homogeneity: CV < 0.3



- ✓ Product flags not identified
- ✓ Average over defined box

$$\overline{RPD} = \frac{\sum_{i=1}^{N} \frac{y_{i} - x_{i}}{x_{i}}}{N} \times 100\%$$

$$\overline{APD} = \frac{\sum_{i=1}^{N} \left| \frac{y_{i} - x_{i}}{x_{i}} \right|}{N} \times 100\%$$

xi – reference measurement

yi – target measurement

N – number of match-ups



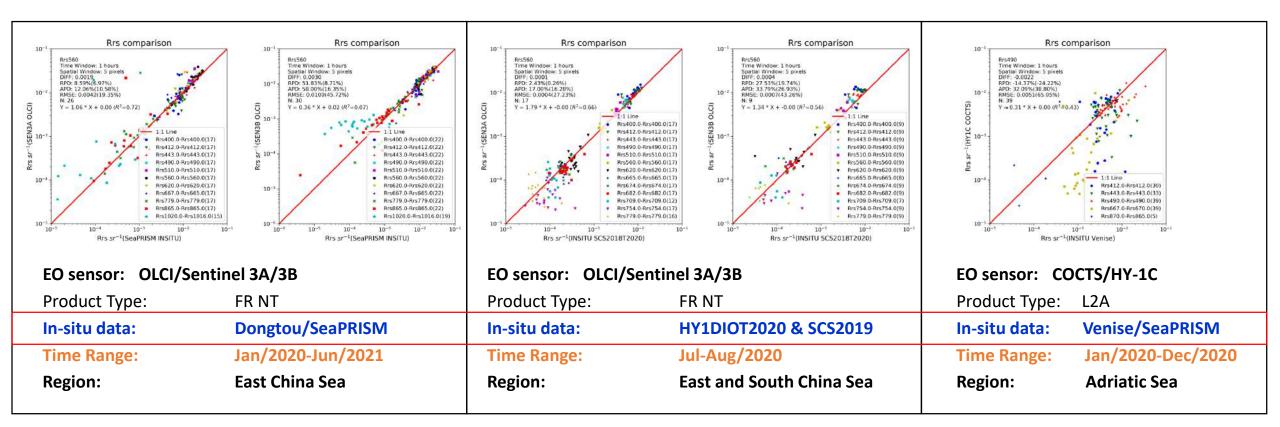






- (1) Validation Activities Ongoing
  - Referenced with SeaPRISM measurements @ Dongtou, East China Sea
    - ✓ OLCI L2, Sentinel 3A/3B
    - ✓ COCTS L2A/L2B, Haiyang 1C/1D
    - ✓ MODIS L2, TERRA
  - Based on SeaPRISM measurements @ Venise, Adriatic Sea
    - ✓ OLCI L2, Sentinel 3A/3B
    - ✓ COCTS L2A/L2B, Haiyang 1C/1D
    - ✓ MODIS L2, TERRA
- (2) Consistency Check First Results
  - OLCI L2 (Sentinel 3A/3B) vs MODIS L2 (Terra)
  - COCTS L2A/L2B (Haiyang 1C/1D) vs MODIS L2 (Terra)
- (3) Young Scientists Training










#### (1) Validation Activities - Ongoing

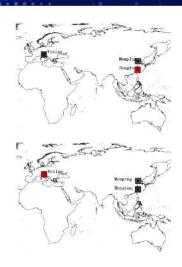
#### First Year (Jun/2020-Jun/2021)











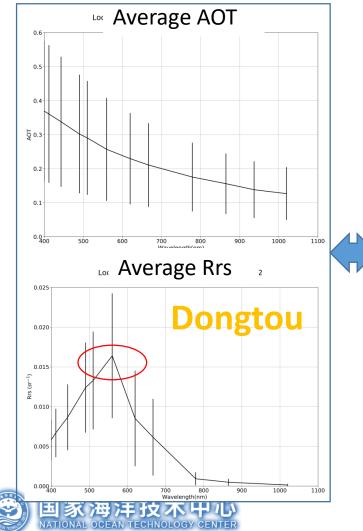

(1) Validation Activities - Ongoing

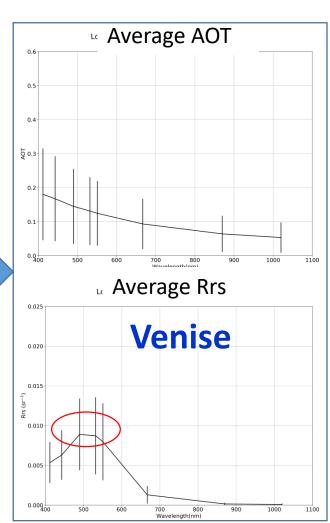
**Second Year (Jun/2021 – Jun/2022)** 

**Dongtou, East China Sea** 

Venise, Adriatic Sea





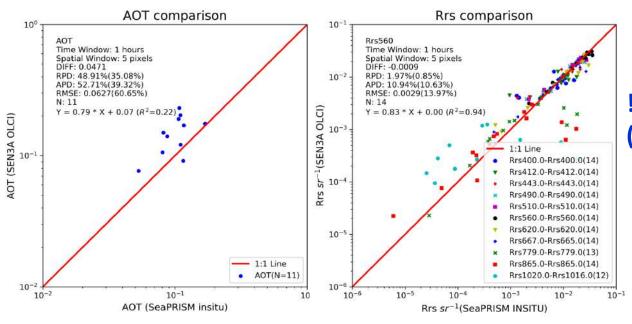





#### (1) In-situ data






- Both typical Case 2 spectral characteristics (see Rrs), but sometimes Case 1 for Venise
- Aerosol load @ Dongtou much higher (also more variance) than that @ Venise
- Rrs peaks around 560nm @
   Dongtou, but flat shoulder
   between 490-532nm@Venise





#### (1) Validation Activities - Ongoing

#### **Second Year (Jun/2021 – Jun/2022)**



!!! No in-situ data is available for Chla (chlorophyll a)







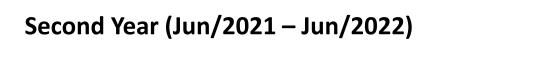


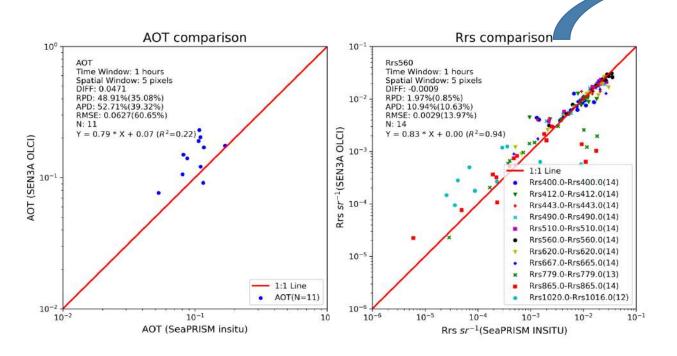
**Chlorophyll model** 

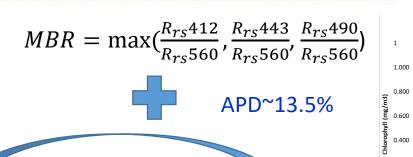
(Sep 2020)

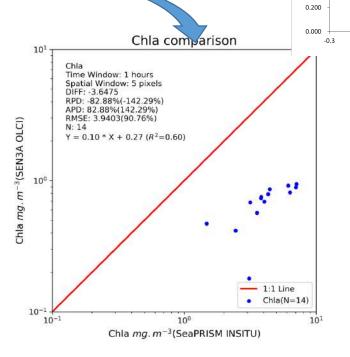
 $y = 22.445x^3 + 5.9734x^2 - 3.329x + 0.0857$ 

 $R^2 = 0.8569$ 


1.000


0.800


0.400


— Polynomial

(1) Validation Activities - Ongoing







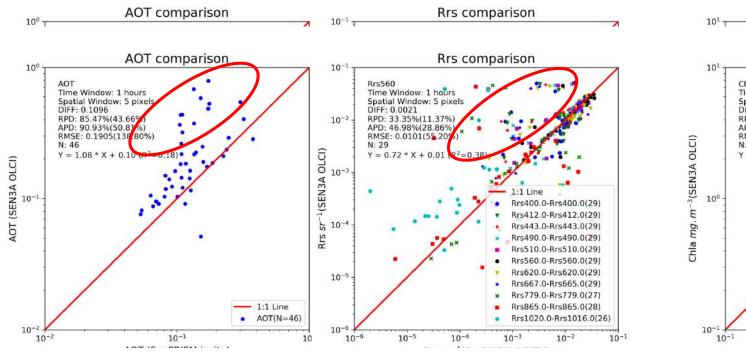


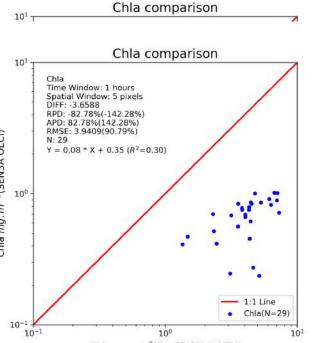









(1) Validation Activities - Ongoing


Dongtou, East China Sea

Second Year (Jun/2021 – Jun/2022)









When product quality flag is not considered, number of match-ups increases greatly! General trend remains but statistics tends to worse (due to certain cases)







#### (1) Validation Activities - Ongoing

#### Dongtou, East China Sea

#### **Second Year (Jun/2021 – Jun/2022)**

# COCTS/Haiyang 1C --- L2A



| 100                                                                     | AOT comparison                                                                                                                 | 10-1 7             | Rrs comparison                                                                                                                                                                      |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Spatial W<br>DIFF: -0.0<br>RPD: -0.7<br>APD: 34.5<br>RMSE: 0.0<br>N: 25 | indow: 1 hours<br>findow: 5 pixels<br>0031<br>(2%(-10.46%)<br>51%(36.51%)<br>0482(39.24%)<br>* X + 0.03 (R <sup>2</sup> =0.22) | sr-1(HY1C COCTS)   | Rrs565 Time Window: 1 hours Spatial Window: 5 pixels DIFF: -0.0046 RPD: -27.71%(-35.28%) APD: 27.71%(35.28%) RMSE: 0.0048(22.59%) N: 17 Y = 1.01 * X + -0.00 (R <sup>2</sup> =0.97) |
|                                                                         | /: '                                                                                                                           | ₹ 10-3             | 1:1 Line Rrs412.0-Rrs412.0( Rrs443.0-Rrs443.0( Rrs490.0-Rrs490.0(                                                                                                                   |
| 10-2                                                                    | • AC                                                                                                                           | 1 Line<br>0T(N=25) | Rrs560.0-Rrs565.0(: + Rrs667.0-Rrs670.0(: - Rrs865.0-Rrs865.0(:                                                                                                                     |
| 10-2                                                                    | 10-1                                                                                                                           | 10 10              | $10^{-4}$ $10^{-3}$ $10^{-2}$                                                                                                                                                       |

| Product       | RPD    | APD   | N* |
|---------------|--------|-------|----|
| Rrs412-Rrs412 | 20.2%  | 39.6% | 17 |
| Rrs443-Rrs443 | -4.1%  | 19.9% | 17 |
| Rrs490-Rrs490 | -12.5% | 17.8% | 17 |
| Rrs565-Rrs560 | -27.7% | 27.7% | 17 |
| Rrs670-Rrs667 | -36.0% | 40.0% | 17 |
| Rrs865-Rrs865 | -10.2% | 99.3% | 9  |
| AOT           | -0.7%  | 34.5% | 25 |

\*Match-up numbers do not match those in the figure because of duplicate COCTS scenes

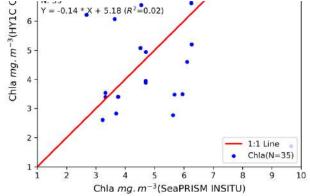






(1) Validation Activities - Ongoing

#### **Dongtou, East China Sea**


Second Year (Jun/2021 - Jun/2022)





| 10° ┬─           | AOT comparison                                                                                                                                                                 | Rrs comparison                                                                                                                                                                      |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AOT (HYIC COCTS) | AOT Time Window: 1 hours Spatial Window: 5 pixels DIFF: -0.0031 RPD: -0.72%(-10.46%) APD: 34.51%(36.51%) RMSE: 0.0482(39.24%) N: 25 Y = 0.71 * X + 0.03 (R <sup>2</sup> =0.22) | Rrs565 Time Window: 1 hours Spatial Window: 5 pixels DiFF: -0.0115 RPD: -48.03%(-91.09%) APD: 60.14%(100.03%) RMSE: 0.0166(69.15%) N: 35 Y = 0.42 * X + 0.00 (R <sup>2</sup> =0.07) |
| 10-2             | 1:1 Line • AOT(N=25)                                                                                                                                                           | 10-5                                                                                                                                                                                |
| 10-2             | 10 <sup>-1</sup><br>AOT (SeaPRISM insitu)                                                                                                                                      | $10 	 10^{-5} 	 10^{-4} 	 10^{-3} 	 10^{-2} 	 10$ Rrs $sr^{-1}$ (SeaPRISM INSITU)                                                                                                   |

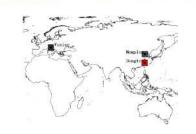
| Product       | RPD    | APD   | N* |
|---------------|--------|-------|----|
| Rrs565-Rrs560 | -48.0% | 60.1% | 35 |
| AOT           | -4.1%  | 33.2% | 22 |
| Chla          | -1.5%  | 31.4% | 35 |
| Rrs565-Rrs560 | -27.7% | 27.7% | 17 |












(1) Validation Activities - Ongoing

#### **Dongtou, East China Sea**

Second Year (Jun/2021 - Jun/2022)





| AOT<br>Time Window: 1 hours<br>Spatial Window: 5 pixel<br>DIFF: -0.0656<br>RPD: -54.27%(-88.01%) | s                    |                                            | 565<br>e Window: 1 hours                                                                           |                                                                        |
|--------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| APD: 62.40%(94.56%) RMSE: 0.0780(62.02%) N: 66 Y = 0.62 * X + -0.02 (R                           |                      | 10 <sup>-2</sup> RPD<br>APD<br>RMS<br>N: 5 | tial Window: 5 pixels<br>F: -0.0027<br>0: 0.95%(-6.94%)<br>0: 33.61%(30.93%)<br>SE: 0.0054(28.83%) |                                                                        |
| 10-1                                                                                             |                      | (HY1D                                      | . /.                                                                                               |                                                                        |
|                                                                                                  |                      | 10-5                                       | ▼ Rrs-                                                                                             | Line<br>412.0-Rrs412.0(52)<br>443.0-Rrs443.0(52)<br>490.0-Rrs490.0(52) |
| 10-2                                                                                             | - 1:1 Lin<br>• AOT(N | 7/8 / / / / / / / / / / / / / / / / / /    | • Rrs!                                                                                             | 560.0-Rrs565.0(52)<br>667.0-Rrs670.0(52)<br>865.0-Rrs865.0(43)         |

| Product       | RPD    | APD     | N* |
|---------------|--------|---------|----|
| Rrs412-Rrs412 | 45.1%  | 76.0%   | 52 |
| Rrs443-Rrs443 | 69.3%  | 88.8%   | 52 |
| Rrs490-Rrs490 | 34.2%  | 47.5%   | 52 |
| Rrs565-Rrs560 | 1.0%   | 33.6%   | 52 |
| Rrs670-Rrs667 | 62.3%  | 90.1%   | 52 |
| Rrs865-Rrs865 | 983.7% | 1003.9% | 43 |
| AOT           | -54.3% | 62.4%   | 66 |

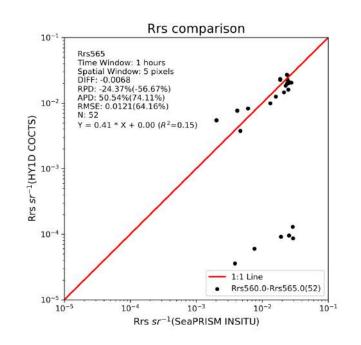




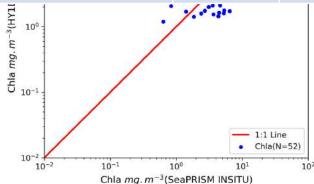




(1) Validation Activities - Ongoing


Dongtou, East China Sea

**Second Year (Jun/2021 – Jun/2022)** 




#### COCTS/Haiyang 1D ---- L2B

No AOT Match-up!



| Product                                | RPD                 | APD                | N* |
|----------------------------------------|---------------------|--------------------|----|
| Rrs565-Rrs560                          | -24.4%              | 50.5%              | 52 |
| AOT                                    | -                   | -                  | -  |
| Chla                                   | 1733.3%<br>(-19.1%) | 1796.7%<br>(46.8%) | 52 |
| // // // // // // // // // // // // // | /                   |                    |    |





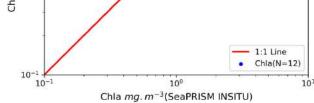






(1) Validation Activities - Ongoing

#### **Dongtou, East China Sea**


Second Year (Jun/2021 - Jun/2022)

### MODIS/TERRA ---- L2



| 10° T                                                                   | AOT compari                                                                                                           | son 10               | -1 Rrs                                                                                                                                                      | comparison                                                                                                                           |
|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Spatial W<br>DIFF: 0.00<br>RPD: 8.01<br>APD: 19.1<br>RMSE: 0.0<br>N: 10 | dow: 1 hours<br>indow: 5 pixels<br>190<br>%(5.13%)<br>1%(17.59%)<br>1245(22.28%)<br>* X + 0.01 (R <sup>2</sup> =0.76) | sr-1(TERRA MOE       | Rrs555 Time Window: 1 hours Spatial Window: 5 pixe DIFF: -0.0084 RPD: -37.47%(-60.42% APD: 55.61%(72.17%) RMSE: 0.0104(62.06%) N: 12 Y = 0.49 * X + 0.00 (R | o)                                                                                                                                   |
|                                                                         | /•                                                                                                                    | 1:1 Line • AOT(N=10) |                                                                                                                                                             | 1:1 Line  * Rrs412.0-Rrs412.0(12)  * Rrs43.0-Rrs443.0(12)  * Rrs490.0-Rrs488.0(12)  * Rrs560.0-Rrs555.0(12)  * Rrs667.0-Rrs667.0(12) |
| 10-2                                                                    |                                                                                                                       |                      |                                                                                                                                                             |                                                                                                                                      |

| Product       | RPD    | APD     | N  |
|---------------|--------|---------|----|
| Rrs412-Rrs412 | 49.4%  | 93.1%   | 12 |
| Rrs443-Rrs443 | 23.9%  | 72.5%   | 12 |
| Rrs488-Rrs490 | -2.0%  | 48.9%   | 12 |
| Rrs555-Rrs560 | -37.5% | 55.6%   | 12 |
| Rrs667-Rrs667 | -12.1% | 111.0%  | 12 |
| AOT           | 8.0%   | 19.1%   | 10 |
| Chla          | -50.8% | 50.8%   | 12 |
| ₹ .           | 1      | :1 Line |    |











(1) Validation Activities - Ongoing

Venise, Adriatic Sea

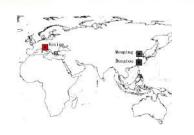
Ton Light.

Woughton Bright on B

Second Year (Jun/2021 – Jun/2022)








(1) Validation Activities - Ongoing

Venise, Adriatic Sea

Second Year (Jun/2021 - Jun/2022)

### OLCI/Sentinel 3A ---- L2 FR NR



| AOT Time Window: 1 hours Spatial Window: 5 pixels DIFF: 0.0344 RPD: 61.60%(44.26%) APD: 62.20%(44.88%) RMSE: 0.0404(47.70%) N: 13 Y = 0.94 * X + 0.04 (R <sup>2</sup> =0.89)  Rrs560 Time Window: 1 ho Spatial Window: 5 DIFF: -0.0001 RPD: 6.34%(-1.26% APD: 24.57%(18.6 RMSE: 0.0014(30.0) N: 13 Y = 0.48 * X + 0.0 |                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Y = 0.94 * X + 0.04 (R <sup>2</sup> =0.89)  Y = 0.94 * X + 0.04 (R <sup>2</sup> =0.89)  Y = 0.94 * X + 0.04 (R <sup>2</sup> =0.89)                                                                                                                                                                                    | 2%)<br>14%)                                                        |
| 1:1 Line<br>• AOT                                                                                                                                                                                                                                                                                                     | Rrs667.0-Rrs674.0(13)  Rrs870.0-Rrs65.0(7)  Rrs1020.0-Rrs1016.0(8) |

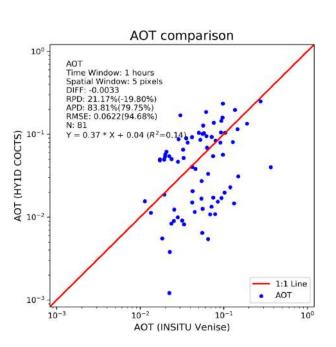
| Product         | RPD     | APD     | N  |
|-----------------|---------|---------|----|
| Rrs412-Rrs412   | 27.6%   | 41.9%   | 13 |
| Rrs443-Rrs443   | 16.3%   | 23.0%   | 13 |
| Rrs490-Rrs490   | -2.1%   | 10.0%   | 13 |
| Rrs551-Rrs560   | 6.3%    | 24.6%   | 13 |
| Rrs665-Rrs667   | -20.2%  | 37.8%   | 13 |
| Rrs674-Rrs667   | -16.5%  | 38.0%   | 13 |
| Rrs865-Rrs870   | 57.6%   | 87.8%   | 7  |
| Rrs1016-Rrs1020 | 2899.8% | 2899.8% | 8  |
| AOT             | 61.6%   | 62.2%   | 13 |
| Chla            | 823.3%  | 958.8%  | 8  |

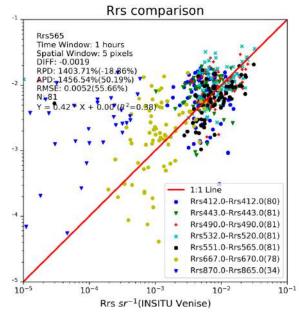









(1) Validation Activities - Ongoing


Venise, Adriatic Sea

Second Year (Jun/2021 - Jun/2022)









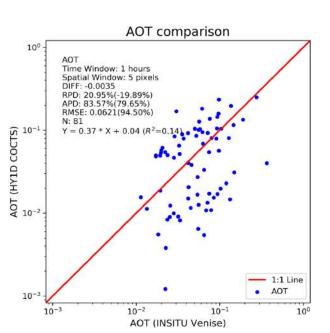
| Product       | RPD     | APD     | N  |
|---------------|---------|---------|----|
| Rrs412-Rrs412 | 64.7%   | 101.1%  | 80 |
| Rrs443-Rrs443 | 51.9%   | 80.2%   | 81 |
| Rrs490-Rrs490 | 8661.5% | 8692.1% | 81 |
| Rrs565-Rrs560 | 1403.7% | 1456.5% | 81 |
| Rrs670-Rrs667 | 158.0%  | 187.6%  | 78 |
| Rrs865-Rrs865 | 5576.8% | 5576.8% | 34 |
| AOT           | 21.2%   | 83.8%   | 81 |

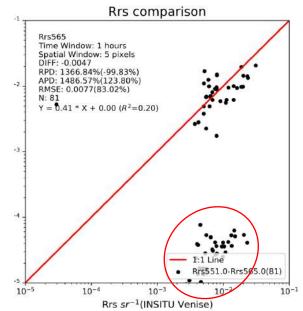









(1) Validation Activities - Ongoing


Venise, Adriatic Sea

Second Year (Jun/2021 - Jun/2022)

#### COCTS/Haiyang 1D --- L2B



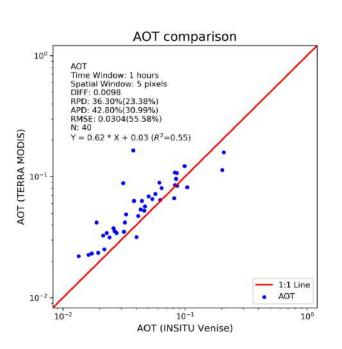


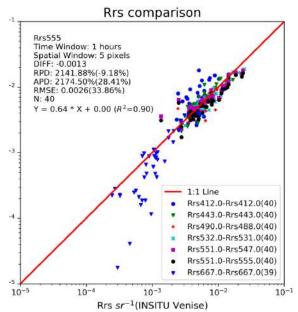


| Product       | RPD                              | APD              | N  |
|---------------|----------------------------------|------------------|----|
| Rrs565-Rrs560 | 1367%                            | 1487%            | 81 |
| AOT           | 20.95%                           | 83.57%           | 81 |
| Chla          | 63%                              | 81%              | 52 |
|               | 0)<br>101 102<br>(INSITU Venise) | 1:1 Line<br>Chla |    |









#### (1) Validation Activities - Ongoing

#### Venise, Adriatic Sea



#### MODIS/TERRA ---- L2



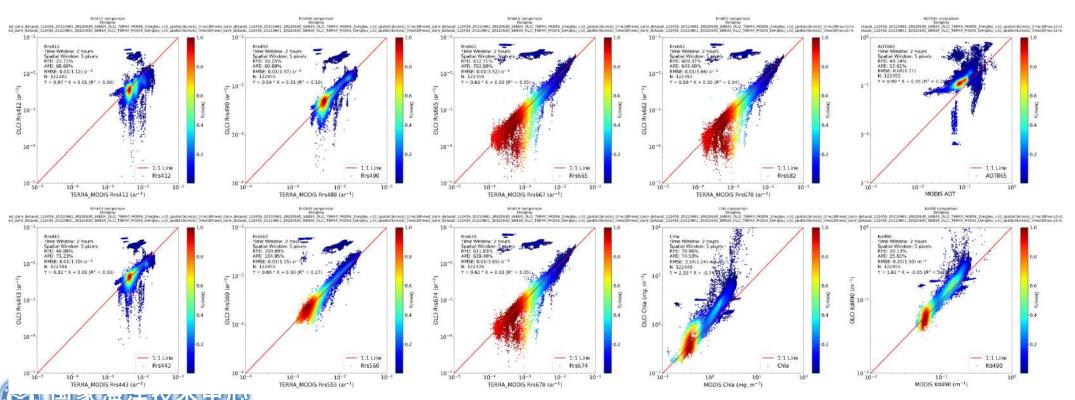


| Product                                                                           | RPD                 | APD                 | N  |
|-----------------------------------------------------------------------------------|---------------------|---------------------|----|
| Rrs412-Rrs412                                                                     | 45.6%               | 56.3%               | 40 |
| Rrs443-Rrs443                                                                     | 4.4%                | 18.9%               | 40 |
| Rrs488-Rrs490                                                                     | -7.9%               | 17.6%               | 40 |
| Rrs547-Rrs551                                                                     | 2413.7%             | 2432.4%             | 40 |
| Rrs667-Rrs667                                                                     | -29.8%              | 36.2%               | 39 |
| AOT                                                                               | 36.3%               | 42.8%               | 40 |
| Chla                                                                              | 3420.0%<br>(104.5%) | 3420.4%<br>(104.9%) | 37 |
| $10^{-3}$ $10^{-2}$ $10^{-1}$ $10^{0}$ $10^{1}$ Chla $mg. m^{-3}$ (INSITU Venise) |                     |                     |    |










(2) Consistency Check – First Results

Second Year (Jun/2021 – Jun/2022)



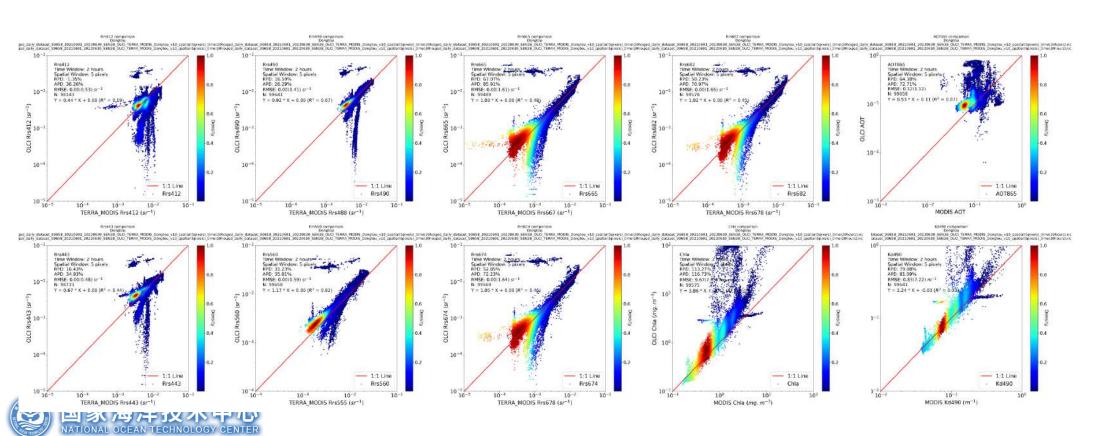
#### **OLCI/Sentinel 3A vs MODIS/TERRA**












(2) Consistency Check – First Results

**Second Year (Jun/2021 – Jun/2022)** 

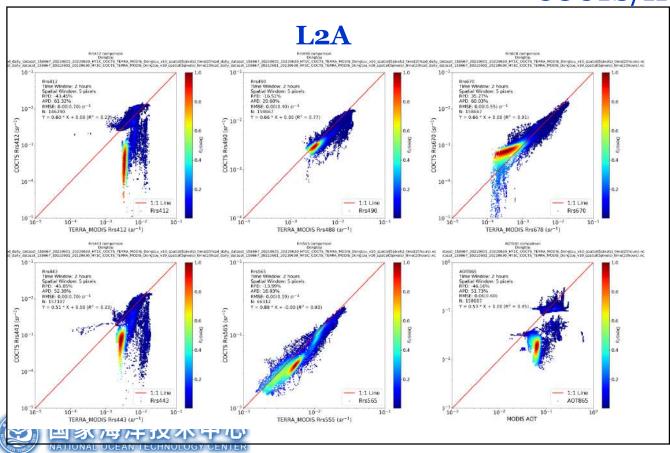


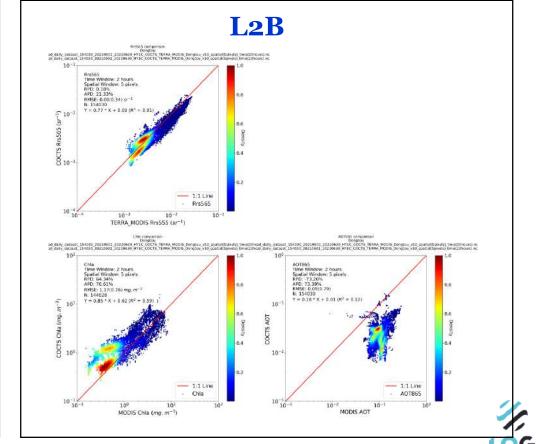
#### **OLCI/Sentinel 3B vs MODIS/TERRA**











(2) Consistency Check – First Results

**Second Year (Jun/2021 – Jun/2022)** 

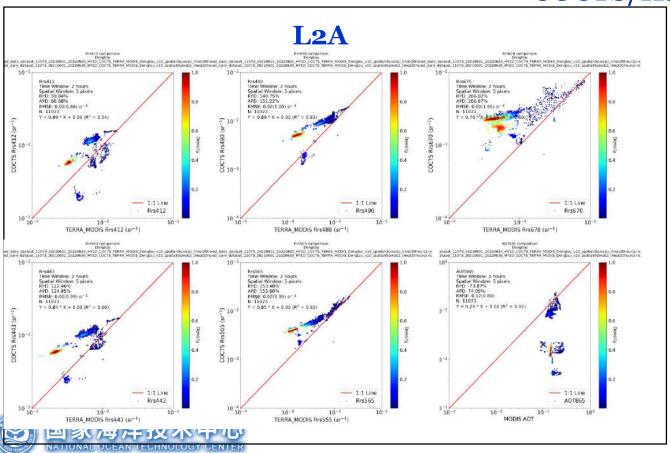


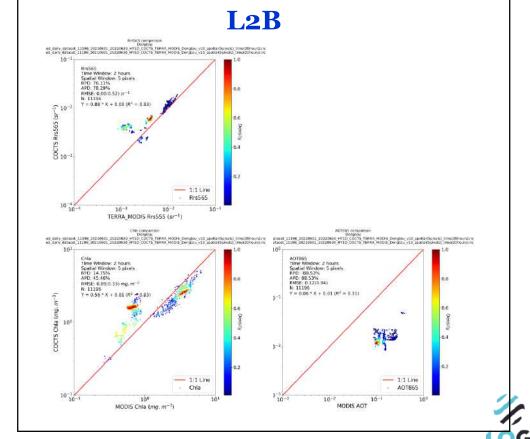
**COCTS/Haiyang 1C vs MODIS/TERRA** 











(2) Consistency Check – First Results

**Second Year (Jun/2021 – Jun/2022)** 

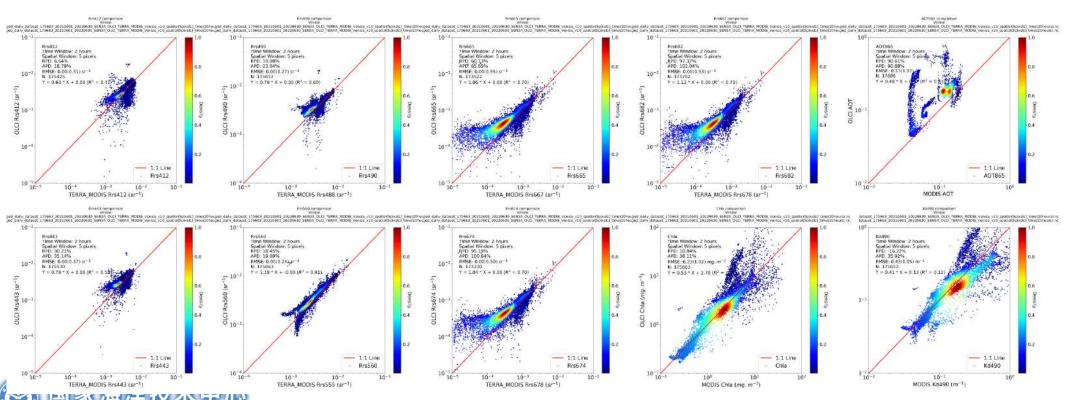


**COCTS/Haiyang 1D vs MODIS/TERRA** 










(2) Consistency Check – First Results

**Second Year (Jun/2021 – Jun/2022)** 



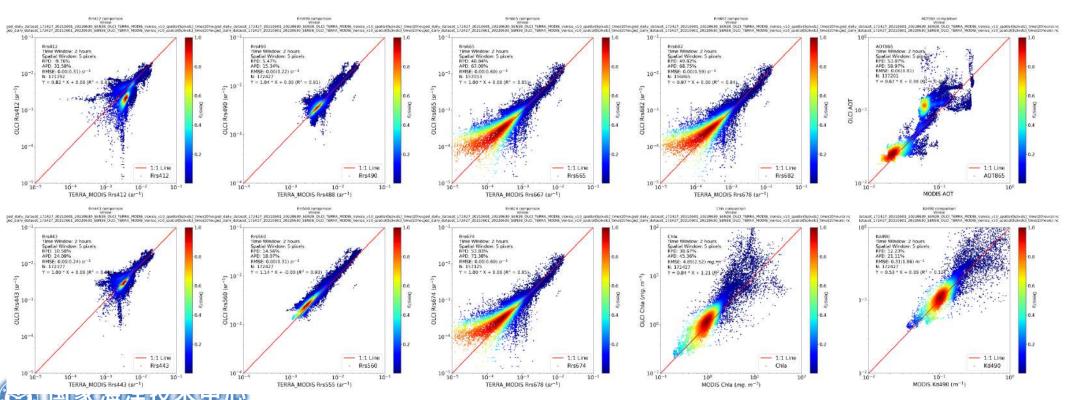
#### **OLCI/Sentinel 3A vs MODIS/TERRA**












(2) Consistency Check – First Results

**Second Year (Jun/2021 – Jun/2022)** 



#### **OLCI/Sentinel 3B vs MODIS/TERRA**











(1) Validation Activities - Ongoing

Venise, Adriatic Sea

Second Year (Jun/2021 - Jun/2022)





| 100 -                                                                                                                                                              | Rrs comparison                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| AOT Time Window: 1 hours Spatial Window: 5 pixels DIFF: 0.0455 RPD: 75.24%(51.89%) APD: 75.24%(51.89%) RMSE: 0.0497(70.80%) N: 11 Y = 1.28 * X + 0.03 (R^2 = 0.84) | dow: 5 pixels<br>1.56%(15.65%)<br>.39%(37.27%) |
| $10^{-2}$ $10^{-1}$ $10^{0}$ $10^{-5}$                                                                                                                             | 10-4 10-3 10-2                                 |

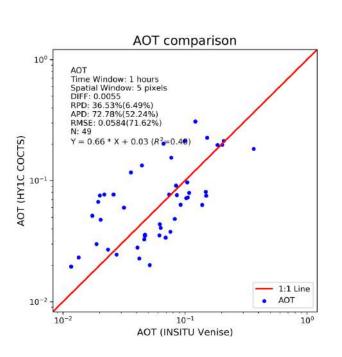
| Product         | RPD     | APD     | N  |
|-----------------|---------|---------|----|
| Rrs412-Rrs412   | 0.1%    | 51.2%   | 11 |
| Rrs443-Rrs443   | 2.4%    | 30.1%   | 11 |
| Rrs490-Rrs490   | 11.7%   | 35.7%   | 11 |
| Rrs551-Rrs560   | 0.6%    | 21.3%   | 10 |
| Rrs665-Rrs667   | -37.3%  | 48.6%   | 11 |
| Rrs674-Rrs667   | -31.2%  | 50.6%   | 11 |
| Rrs865-Rrs870   | -5.6%   | 44.4%   | 9  |
| Rrs1016-Rrs1020 | 2781.3% | 2781.3% | 8  |
| AOT             | 75.2%   | 75.2%   | 11 |
| Chla            | -65.0%  | 65.0%   | 5  |

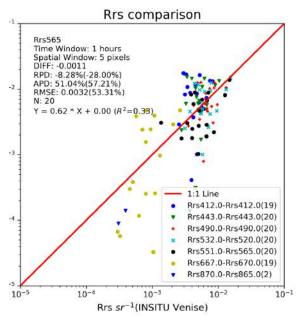









(1) Validation Activities - Ongoing


Venise, Adriatic Sea

**Second Year (Jun/2021 – Jun/2022)** 









| Product       | RPD    | APD    | N  |
|---------------|--------|--------|----|
| Rrs412-Rrs412 | 98.3%  | 119.8% | 19 |
| Rrs443-Rrs443 | 44.8%  | 78.7%  | 20 |
| Rrs490-Rrs490 | 3.0%   | 42.9%  | 20 |
| Rrs565-Rrs551 | -8.3%  | 51.0%  | 20 |
| Rrs670-Rrs667 | 62.9%  | 143.4% | 19 |
| Rrs865-Rrs870 | -67.6% | 67.6%  | 2  |
| AOT           | 36.53% | 72.78% | 49 |









### (4) Young Scientists Training

| Name                              | Contribution                               | Status              |
|-----------------------------------|--------------------------------------------|---------------------|
| Shuang CAO (postgraduate)         | Backscattering modelling                   | Graduated           |
| Qiaoying YUAN<br>(postgraduate)   | Validation                                 | To graduate in 2024 |
| Di JIA<br>(associate researcher)  | Processing and quality control of SeaPRISM | Promoted            |
| Kai GUO<br>(assistant researcher) | Optical measurement                        | -                   |







### **Future Plans**



#### **Schedule:**

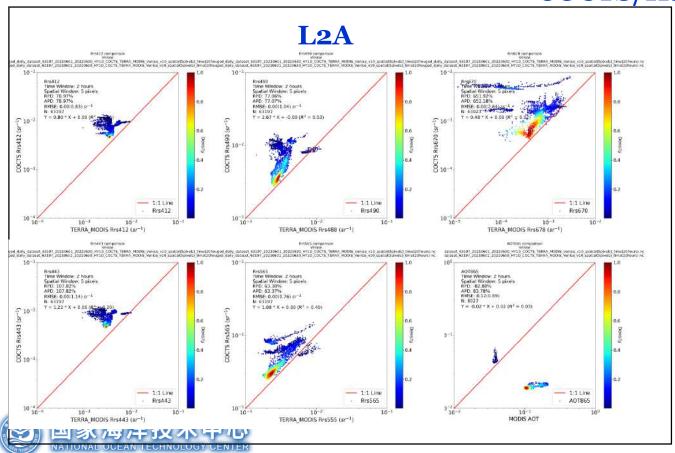
#### □ July 2022-June 2023

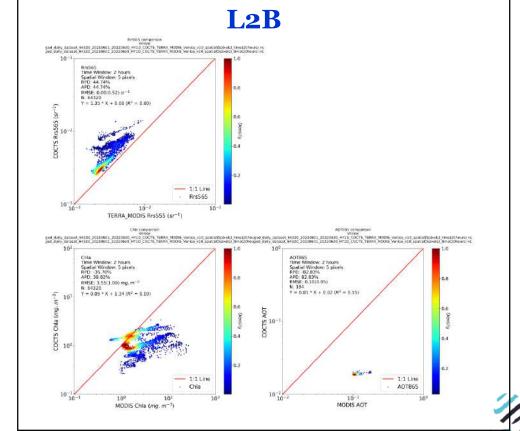
- (1)Continuously validating reflectance and other products(e.g., chlorophyll concentration) provided by OLCI and COCTS with in-situ data
- (2)CZI and MSI data products needs to be considered, Mouping and other SeaPRISM data will be considered
- (3)Consistency check will be extended
- (4) Check difference among various atmospheric correction and bio-optical algorithms
- (5)Collect in-situ coincident biological and optical measurements to develop novel biooptical algorithms, and explore more accurate EO products











(2) Consistency Check – First Results

**Second Year (Jun/2021 – Jun/2022)** 



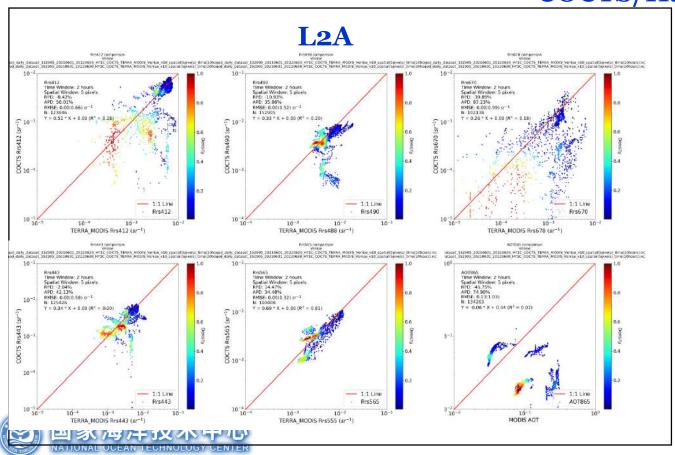
**COCTS/Haiyang 1D vs MODIS/TERRA** 

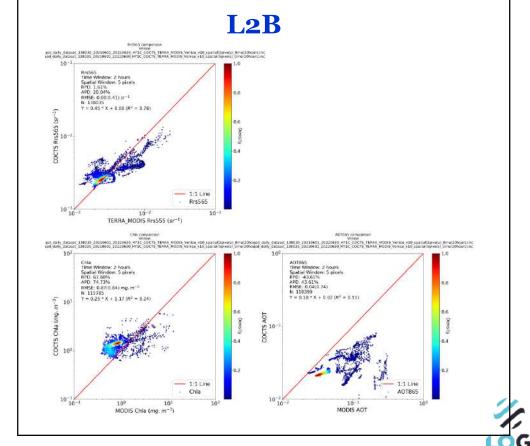












(2) Consistency Check – First Results

**Second Year (Jun/2021 – Jun/2022)** 



**COCTS/Haiyang 1C vs MODIS/TERRA** 



