
Management and QC procedures of oxygen data in the Argo data stream

V. Thierry

Cycle and profiles, files name

Data acquired during ascend or descent are stored in "profile" file exemple:

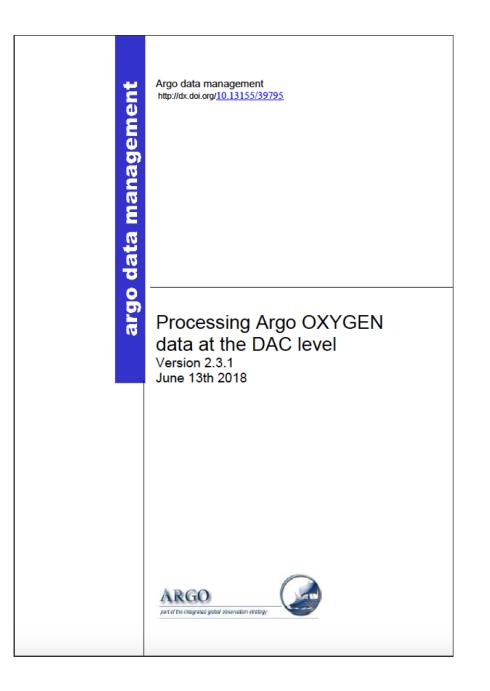
R5902269_001.nc	PTS data for descending profiles
R5902269_001 <mark>D</mark> .nc	PTS data for descending profiles
BR5902269_001.nc	BIO data for ascending profiles, including oxygen

Data acquired during drift at parking depth and at surface are stored in "trajectory" file5902269_Rtraj.ncPTS data during drift5902269_BRtraj.ncBIO data during drift, including oxygen

Data format and data management Parameters strored in the files

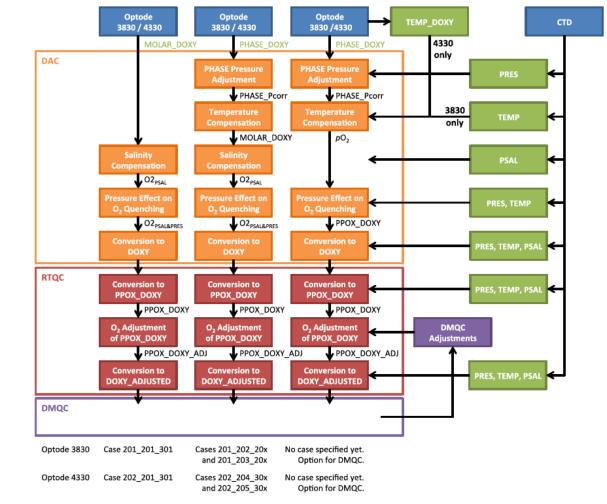
Final physical parameter: DOXY Unit: µmol/kg

Intermediate parameters (associated to different calibration equations /sensor described in the cookbook)


- TEMP_DOXY
- TEMP_VOLTAGE_DOXY
- VOLTAGE_DOXY
- FREQUENCY_DOXY
- COUNT_DOXY
- RPHASE_DOXY
- BPHASE_DOXY
- DPHASE_DOXY
- TPHASE_DOXY
- C1PHASE_DOXY, C2PHASE_DOXY
- MOLAR_DOXY
- PHASE_DELAY_DOXY
- MLPL_DOXY

Data format and data management ARGO-O2 processing manual

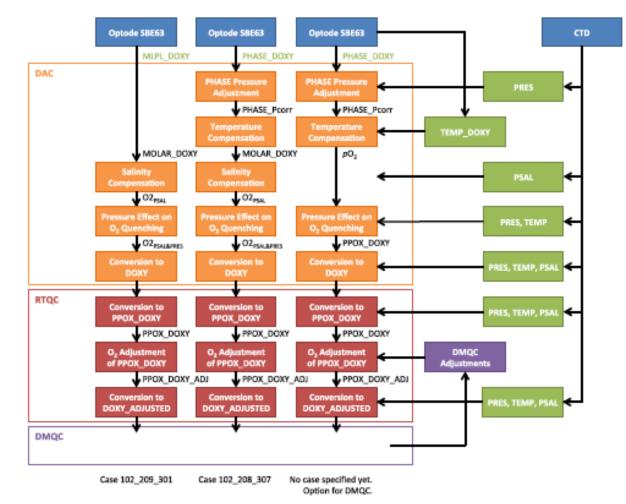
- Define how to compute DOXY from raw data recorded and transmitted by the sensor
- First part details the scientific basis of the oxygen measurements and computation, describe the different sensors and associated calibration equations


→ in general copy/paste of the Oxygen Sensor manuals
 → take also into account SCOR WG142 results

- Second part is the practical part for the DAC. No need to be an expert to read and use this part. It provides the clear computational method for each case and the way to fill meta data and all required fields
- Thierry V., H. Bittig, D. Gilbert, T. Kobayashi, K. Sato, C. Schmid, 2018: Processing Argo OXYGEN data at the DAC level, v2.3.1, http://dx.doi.org/10.13155/39795

Data format and data management ARGO-O2 processing manual

- Define how to compute DOXY from raw data recorded and transmitted by the sensor
- First part details the scientific basis of the oxygen measurements and computation, describe the different sensors and associated calibration equations
 - → in general copy/paste of the Oxygen Sensor manuals
 → take also into account SCOR WG142 results
- Second part is the practical part for the DAC. No need to be an expert to read and use this part. It provides the clear computational method for each case and the way to fill meta data and all required fields
- Thierry V., H. Bittig, D. Gilbert, T. Kobayashi, K. Sato, C. Schmid, 2018: Processing Argo OXYGEN data at the DAC level, v2.3.1, http://dx.doi.org/10.13155/39795


3.2 Aanderaa optodes

Data format and data management ARGO-O2 processing manual

- Define how to compute DOXY from raw data recorded and transmitted by the sensor
- First part details the scientific basis of the oxygen measurements and computation, describe the different sensors and associated calibration equations
 - → in general copy/paste of the Oxygen Sensor manuals
 → take also into account SCOR WG142 results
- Second part is the practical part for the DAC. No need to be an expert to read and use this part. It provides the clear computational method for each case and the way to fill meta data and all required fields
- Thierry V., H. Bittig, D. Gilbert, T. Kobayashi, K. Sato, C. Schmid, 2018: Processing Argo OXYGEN data at the DAC level, v2.3.1, http://dx.doi.org/10.13155/39795

3.1 Seabird sensors

For the SBE43 IDO electrochemical sensor, there currently exists only one processing route (see §4.1.1). For the SBE63 optode with multiple processing paths, the recommended processing is illustrated below.

CASE_SensorModelId_InputParamId_ComputationMethodId

			Input parameter										
			201	202	203	204	205	206	207	208	209	210	211
			MOLAR_D OXY	BPHASE_ DOXY	DPHASE_ DOXY	TPHASE_ DOXY	C1PHASE_ DOXY & C2PHASE_ DOXY	VOLTAGE_ DOXY	FREQUENCY_ DOXY	PHASE_DEL AY_DOXY	MLPL_DOXY	LED_FLASHING_COU NT_DOXY & COUNT_DOXY	COUNT_D OXY
	101	SBE43_IDO						206 (7.2.1)					
	102	SBE43F_IDO							206 (7.2.2)				
	103	SBE63_OPTODE								307 (7.2.5) 308 (7.2.6)	301 (7.2.7) 309 (7.2.8)		
lel	201	AANDERAA_OPT ODE_3830	301 (7.2.11)	204 (7.2.13) 302 (7.2.14)	202 (7.2.16) 204 (7.2.17) 302 (7.2.18) 304 (7.2.19)								
Sensor Model	202	AANDERAA_OPT ODE_4330 AANDERAA_OPT ODE_4330F	301 (7.2.22)			202 (7.2.23) 203 (7.2.24) 204 (7.2.25) 205 (7.2.26) 302 (7.2.27) 303 (7.2.28) 304 (7.2.29) 305 (7.2.30)	205 (7.2.34) 302 (7.2.35)						
	301	ARO_FT										401 (7.2.40)	

Table 5: Configurations for the calculation of DOXY as function of the sensor model and input parameter. The recommended configurations are highlighted in bold.

CASE_SensorModelId_InputParamId_ComputationMethodId

						O ₂ respon	se model (~T	ype of calibra	tion sheet)			
				optical sensors								
			electro- chemical sensors	internal calculation	20-term polynomial	28-term polynomial	28-term polynomial + 2 points adjustment	(old) Stern- Volmer	SVU Stern- Volmer	SVU Stern- Volmer + 2 points adjustment	SBE Stern- Volmer	JAC Stem- Volmer
	101	SBE43_IDO	206_206 (7.2.1)									
	102	SBE43F_IDO	207_206 (7.2.2)									
	103	SBE63_OPTODE		209_301 (7.2.7)							208_307 (7.2.5)	
				209_309 (7.2.8)							208_308 (7.2.6)	
				201_301 (7.2.11)	202_202 (7.2.12)			202_204 (7.2.13)				
odel	201	AANDERAA_OPTODE_ 3830			202_302 (7.2.14)			202_304 (7.2.15)				
Sensor model					203_202 (7.2.16)			203_204 (7.2.17)				
Sens					203_302 (7.2.18)			203_304 (7.2.19)				
				201_301 (7.2.22)		204_202 (7.2.23)	204_203 (7.2.24)		204_204 (7.2.25)	204_205 (7.2.26)		
	202	AANDERAA_OPTODE_ 4330 or AANDERAA_OPTODE_ 4330F				204_302 (7.2.27)	204_303 (7.2.28)		204_304 (7.2.29)	204_305 (7.2.30)		
						205_202 (7.2.31)	205_203 (7.2.32)		205_204 (7.2.33)	205_205 (7.2.34)		
						205_302 (7.2.35)	205_303 (7.2.36)		205_304 (7.2.37)	205_305 (7.2.38)		
	301	ARO_FT										210_401 (7.2.40)

Table 6: Configurations for the calculation of DOXY as function of the sensor model and O2 response model. The recommended configurations are highlighted in bold.

	/100]+D3*SJ; Ts2=lnf(298.15-TEMP)/(273.15+TEMP)); Pcorr=1+((Pcoef2*TEMP+Pcoef3)*PRES)/1000; DOXY=O2/rho, where rho is the potential density [kg/L] calculated from CTD data
PREDEPLOYMENT_CALIB_COEFFICIENT	Spread: Proof: = Proof: Proof: = Proof: Proof: = Proof: B0=B0, B1=B1, B2=B2, B3=B3, CD=C0, PhaseCoefD, PhaseCoefI, PhaseCoefI, = PhaseCoefI, PhaseC
PREDEPLOYMENT_CALIB_COMMENT	see TD269 Operating manual oxygen optode 4330, 4835, 4831; see Processing Argo OXYGEN data at the DAC level, Version 2.2 (DOI: http://dx.doi.org/10.13155/39795)

7.2.29 CASE_202_204_304

Sensor: AANDERAA_OPTODE_4330

Sensor output: uncalibrated phase in degree TPHASE_DOXY

<u>Calculation</u>: Stern-Volmer conversion of raw data to oxygen concentration on umol/L with TEMP_DOXY from the oxygen sensor + pressure and salinity compensation with TEMP, PRES and PSAL from the CTD + unit conversion

Calculation input:

- PRES, PSAL and TEMP, pressure, salinity and temperature from the CTD
- TPHASE DOXY from the oxygen sensor
- TEMP DOXY, the temperature from the oxygen sensor
- P_{coeff}, P_{coeff}, P_{coeff}, the pressure compensation coefficients (default P_{coeff}=0.1, P_{coeff}=0.00022, P_{coeff}=0.0419)
- B0, B1, B2, B3 and C0 the salinity compensation coefficient (default B0 = -6.24523e-3; B1 = -7.37614e-3; B2 = -1.03410e-2; B3 = -8.17083e-3; C0 = -4.88682e-7)
- D0, D1, D2 and D3 the pH20 computation coefficient (default D0 = 24.4543, D1 = -67.4509, D2 = -4.8489, D3 = -5.44e-4)

S_{preset} = 0

- rho, the potential density of water [kg/L] at zero pressure and at the potential temperature computed from PRES, TEMP and PSAL (from CTD) (UNESCO, 1983 [RD3] and Millero, 1981 [RD11])
- PhaseCoef₀, PhaseCoef₁, PhaseCoef₂ and PhaseCoef₃ coefficients provided in the optode calibration certificate. If they are not, then uses PhaseCoeff0=0, PhaseCoeff1=1, PhaseCoeff2=0, PhaseCoeff2=0 (see §9.2.2.3 in ANNEX A for an example).
 For calibrations after Apr. 2017, PhaseCoeff0=0 must be verified by recalculation of the calibration data, as it may not figure on the calibration certificate.
- ci coefficients provided in the optode calibration certificate (see §9.2.2.3 in ANNEX A for an example)

Calculation output:

DOXY in umol/kg

Equations:

 $Phase_Pcorr = TPHASE_DOXY + P_{coef1} \times PRES/1000$

 $CalPhase = PhaseCoef_0 + PhaseCoef_1 \times Phase_Pcorr + PhaseCoef_2 \times Phase_Pcorr^2 + PhaseCoef_3 \times Phase_Pcorr^3$

 $MOLAR_DOXY = [((c_3 + c_4 \times TEMP_DOXY)/(c_5 + c_6 \times CalPhase)) - 1]/K_{SV}$

 $K_{SV} = c_0 + c_1 \times TEMP_DOXY + c_2 \times TEMP_DOXY^2$

 $O2_{PSAL\&PRES} = MOLAR_DOXY \times [S_{corr}] \times [P_{corr}]$

 $S_{\textit{corr}} = A(\textit{TEMP}, \textit{PSAL}, \textit{S}_{\textit{preset}}) \times e^{\left((\textit{PSAL}) \times \left(\textit{B0+B1.}T_{s} + \textit{B2.}T_{s}^{-2} + \textit{B3.}T_{s}^{-3}\right) + C_{0} \times \left(\textit{PSAL}^{2}\right)\right)}$

 $A(TEMP, PSAL, S_{preset}) = \frac{1013.25 - pH_2O(TEMP, S_{preset})}{1013.25 - pH_2O(TEMP, PSAL)}$

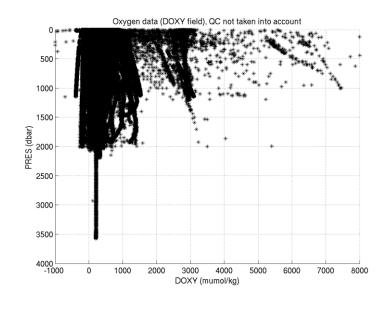
 $pH_2O(TEMP,S] = 1013.25 \times e^{(D_0+D_1\times \left(\frac{100}{TEMP+273.15}\right) + D_2\times ln\left(\frac{TEMP+273.15}{100}\right) + D_3\times S)}$

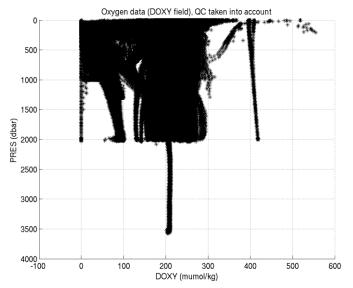
 $P_{corr} = 1 + \frac{\left(P_{coef2} \times TEMP + P_{coef3}\right) \times PRES}{1000}$

 $T_s = ln((298.15 - TEMP)/(273.15 + TEMP))$

 $DOXY[umol/kg] = O2_{PSAL\&PRES}/rho$

Float sensor information		
Name	Value	
SENSOR	OPTODE_DOXY	
SENSOR MAKER	AANDERAA	
SENSOR MODEL	AANDERAA OPTODE 4330	
SENSOR SERIAL NO	Sensor serial number	


Float parameter information				
Name	Value			
PARAMETER	TPHASE_DOXY			
PARAMETER_SENSOR	OPTODE_DOXY			
PARAMETER_UNITS	degree			
PARAMETER_ACCURACY	<u>??</u>			
PARAMETER RESOLUTION	<u>??</u>			
Float calibration information				
Name	Value			
PREDEPLOYMENT_CALIB_EQUATION	none			
PREDEPLOYMENT_CALIB_COEFFICIENT	none			
PREDEPLOYMENT_CALIB_COMMENT	Phase measurement with blue excitation light; see TD269 Operating manual oxygen optode 4330, 4835, 4831			


Float parameter information				
Name	Value			
PARAMETER	DOXY			
PARAMETER_SENSOR	OPTODE_DOXY			
PARAMETER_UNITS	umol/kg			
PARAMETER_ACCURACY	<u>10</u>			
PARAMETER RESOLUTION	0.1			
Float calibration information				
Name	Value			
PREDEPLOYMENT_CALIB_EQUATION	Phase_Pcon=TPHASE_DOXY+Pcoef1*PRES(1000; CalPhase=PhaseCoef1*PhaseCoef1*Phase_Pcon*2+Phase Coef3*Phase_Pcon*3; MOLAR_DOXY=[(C3+c4*TEMP_DOXY)(c5+c6*CalPhase))- 1]/(SV; KSV=C0+c1*TEMP_DOXY+c2*TEMP_DOXY^2; O2=MOLAR_DOXY*5con*Pcon; Scon=A*exp[@SAL*(80+B1*Ts+B2*Ts^2+B3*Ts^3)+C0*PSAL^2]; A=[(1013.25-			

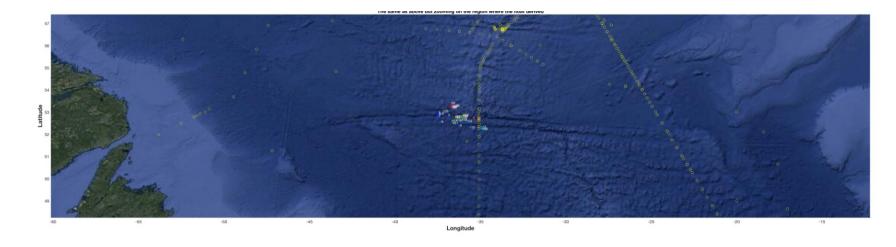
88

Real-time QC tests What is already existing

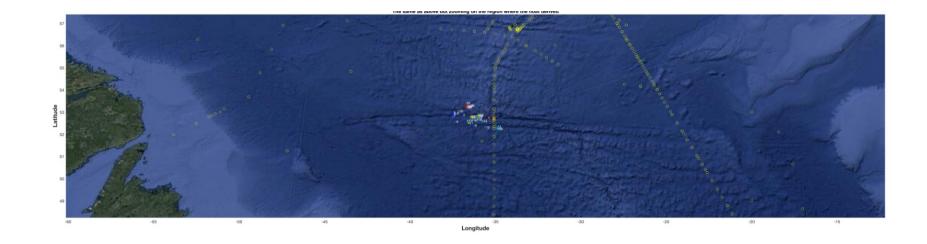
- Automatic tests done on real time data to assess QC flag to DOXY
- QC flag = 0 : no QC performed
- QC flag = 1 : good data
- QC flag = 2 : probably good data
- QC flag = 3 : probably bad data
- QC flag = 4 : bad data
- Agreement of real-time QC tests for O2 data in 2012
 - Global range test + Spike test + Gradient test + Stuck value test
 - Clear efficiency of the tests at that time
- Need to improve those tests to better reflect the data quality (on going work)
 - Known bias (QC=3?)
 - Need to detect sensor drift or failure

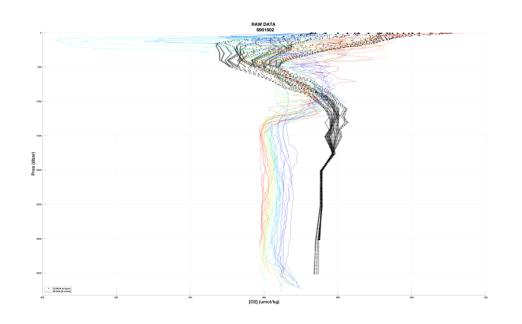
Adjustment

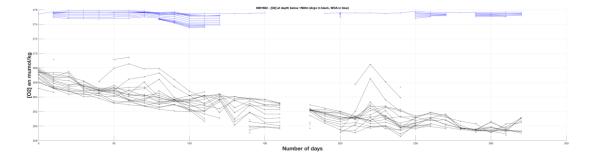
- Raw data= real-time data
 - DOXY: Raw O2 value computed from intermediate parameters recorded by sensor and computed from calibration equation and coefficient
 - DOXY_QC: QC flags assessed by RT QC tests
- Adjusted data
 - DOXY_ADJUSTED: O2 value that went through an adjustment process. The data are corrected (or not) of any sensor bias or drift
 - DOXY_ADJUSTED_QC
 - Adjustment in real-time (parameter data mode='A') based on automatic procedure, adjusted data available in real-time (B5902269_001.nc)
 - Adjustment in delayed mode (parameter data mode='D') done by a delayed mode operator, adjusted data available with some delay. Best data based on current knowledge (BD5902269_001.nc)

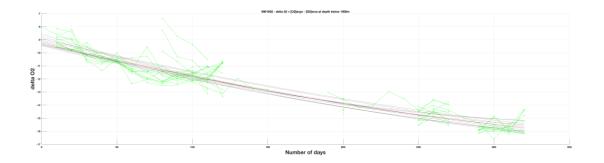

QC procedures described in two cookbooks

Delayed mode adjustment

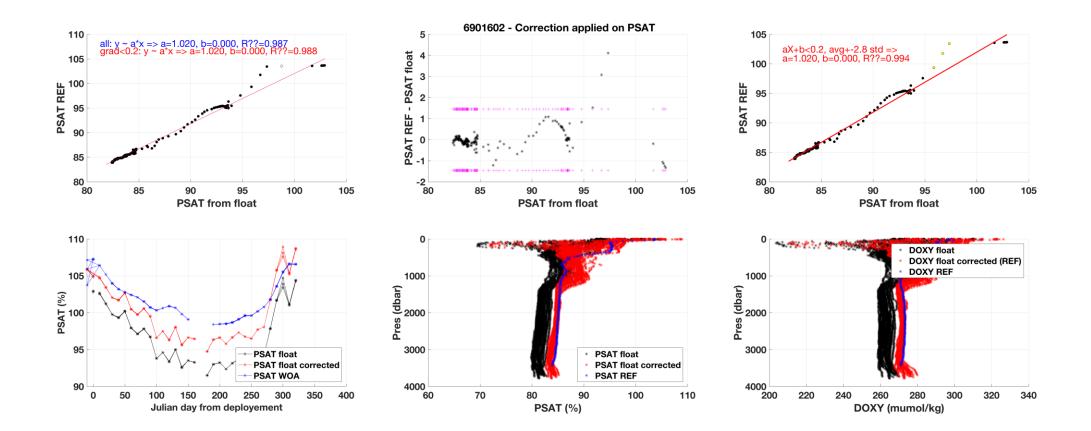

- Based on reference data : WOA, ship-based calibrated profile, in air measurements
- Methods described in Takeshita et al. (2013), Johnson et al. (2015), Bittig et al. (2018), etc..
- Existing tool
 - Sage-O2 (US)
 - LOCODOX (France)

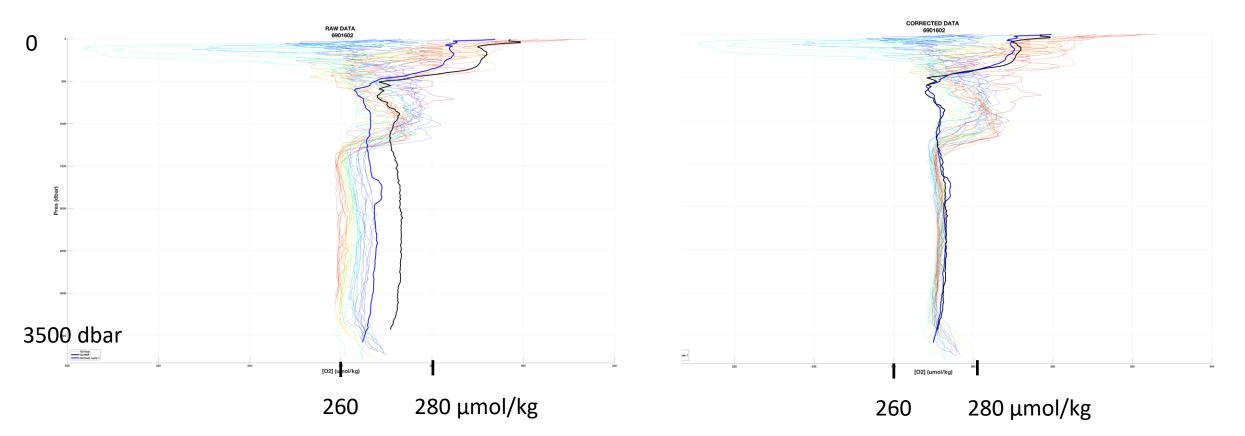

LOCODOX




RAW DATA 6901602 02 ficet 02 REF 02 ficet, cycle 1 [02] (umol/kg)

LOCODOX





LOCODOX

Real-time adjustment

- Need to be implemented
- Based on last estimate of DM adjustment
 - This will be tested for and discussed at the next ADMT meeting
- Based on in air measurement
 - Still need to work on that, in particular the correction in the deep layers
- Based on WOA
 - Not very satisfactory