CES ODATIS CO₂ - pH marin

Integrated observations of oceanic CO₂ in the Northwestern Mediterranean Sea

Laurent Coppola¹, Marine Fourrier¹, Dominique Lefevre², Caroline Ulses³, Thibaut Wagener² and Cathy Wimart-Rousseau²

¹ LOV, Villefranche sur Mer, France
² MIO, Marseille, France
³ LEGOS, Toulouse, France

The Northwestern Mediterranean Sea

7 Coastal

6 Coastal

5 Bloom

3 No Bloom 2 No Bloom

1 No Bloom

Dynamic region with intense winter convection and deep ventilation

d'Ortenzio and Ribera d'Alcala. 2009

Approach with CO₂ time series at fixed stations

The MOOSE observing system

Fixed stations (monthly sampling) DYFAMED, since 1998 ANTARES, since 2010 MOLA, since 2010

Network of annual basin scale stations **MOOSE-GE**, since 2010

The SOMLIT observing system

Fixed stations (Weekly sampling) **Point B**, since 2005 **SOLEMIO**, since 2016

Collaboration with Spain and Italy within European initiatives (EMSO, EURO-ARGO, ICOS,...): **the N.W. Med. Sea is one of the most observed area**

Carbonate chemistry is estimated from "high quality" measurements of A_T , C_T and pH_T

Example with a long time series (DYFAMED)

More than two decades of data ...

Sediment trap fluxes at 200 & 1000m (Coppola, pers. com.)

It is important to estimate the fraction of organic carbon **exported and sequestered**. Surface pCO2 observations are essential but not enough to understand the impacts of global warming on CO₂ cycle: need to observe the carbon into the ocean interior !

Approach with high frequency measurements

Deployment of pCO₂^{SW} and pH sensors

- Surface buoy: pCO₂^{SW} surface measurements with CARIOCA at DYFAMED (1995-1997, 2013 - present)
- **Mooring**: pH measurements at DYFAMED and ANTARES (2021-....)
- 2 BGC-Argo floats deployments with pH sensor
- Planned: pH on gliders and pCO2 surface with Ferrybox (RV Thalassa) during MOOSE-GE

High frequency for oceanic CO₂ measurements from various platforms with real-time or delayed mode

Approach with a regional neural network

Carbonate chemistry variable can be inferred from cost-effective « predictors » thanks to machine learning

CANYON-MED a regional method for the MedSea (Fourrier et al., 2020)

- Tuned for a specific use in the Med. Sea
- Trained using quality-controlled dataset for the Med. Sea.

CANYON for the global ocean : « CArbonate system and Nutrients concentration from hYdrological properties and Oxygen using a Neural-network » (Sauzède et al. 2017)

Fourrier et al., 2020/2021

Example with CANYON-MED

- Based on « high-quality » oxygen measurements from BGC-Argo floats deployed in the North-Western Med. during the last decade.
- Total carbon and alkalinity increase from 2013-2020 in the entire water column
- Deep winter mixing: deeper penetration of atmospheric CO2 and lower pH
- Biological pump: release CO2 during remineralization of sinking particles

Fourrier et al., JGR Oceans in

Approach with a regional PHY-BGC model

Implementation of a coupled physical/biogeochemical/carbonate system model to investigate the seasonal cycle and estimate an annual budget of air-sea CO2 fluxes

Example: first model estimations of air-sea CO₂ fluxes

Seasonal cycle

Annual budget: The NW Med. Sea is a moderate sink for atmospheric CO_2 (annual flux of +0.5 mol/m²/yr for convection zone during 2012/13) mostly driven by the coastal area of the Gulf of Lion (+1.5 mol/m²/yr)

Future applications in the NW MedSea

CARIOCA

The combination "virtual" / in-situ data allows:

- "Internal consistency" test
- Able to fill the gaps

Fourrier and Coppola, personal communication.

Use of these «augmented mooring line» observations for match-up with autonomous moving platforms.

The ATL2MED Saildrone mission

Thèse M.Fourrier, Sorbonne Univ. 2021

.

.

.

Data management: QC procedures & databases

ALL CASTS pHT25

pHT25

- MOOSE CO₂ data (AT-CT-pH) available in SISMER (monthly and annual cruises) with DOI and QC procedures from experts (T.Wagener, N.Metzl, L.Coppola)
- SOMLIT pH only available on SOMLIT database
- pCO2 from DYFAMED available on SOCAT after qualification with in situ TA, TC (L.Beaumont)

0 1- For TA, TC in duplicate: difference $< 10 \mu mol/kg$ 200 200 2- For TA, CT in deep waters : values < mean +/- 2 x stdev 000 000 CTDPRS CTDPRS 3- Measurement of a third parameter (pH) during 500 500 MOOSE-GE 2000 2000 Comparison of pH measured values (in duplicate) and calculated pH values (measurements carried 2500 2500 out on board, no conservation of samples, low cost) pH QC good when diff. pH < 0.027.85 8.05 7.90 7.95 8.00 -0.02 -0.01

-0.01 0.00 delta pht25

0.01

0.02

ALL CASTS delta pht25

Conclusion

Estimation of long term trends

- Trends of pCO₂^{Sw} and acidification from the longest time-series of oceanic CO₂ is unique but not enough
- "Virtual" measurements can "extend in space and time" oceanic CO₂ measurements BUT need high quality S & O2 data with easy access (FAIR procedures)

Estimation of air-sea CO₂ fluxes

- Coordinated observations from the coast to the open Med. Sea is needed.
- High resolution regional models to estimate air-sea CO₂ fluxes at the scale of the N.W.
 Med. Sea are under development and promising
- New technologies are also promising but need more tests & validation (gliders, surface drones...)

NW Med Sea: a case study for integrated CO₂ oceanic observations (ICOS, EURO-ARGO, EMSO)

Combination of *in-situ* data + "virtual" data + regional models : a tool to better understand CO_2 dynamic in the face of climate change