

CES ODATIS CO₂/pH marin

Application des matériaux de référence pour les mesures de pH_T

Gaëlle Capitaine, Daniela Stoica, Séverine Demeyer, Paola Fisicaro

CONTEXTE: COLLABORATION AVEC LE SNO SOMIIT

Production et caractérisation d'un lot de matériau de référence TRIS-TRIS.HCl au LNE

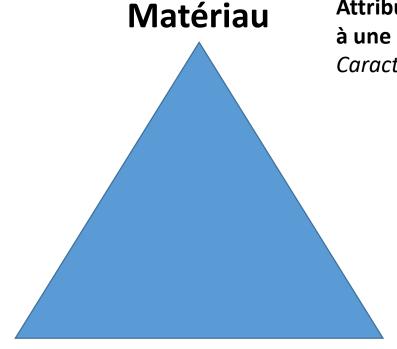
Tampon TRIS-TRIS.HCI en matrice d'eau de mer artificielle de salinité 35

- Composition connue et facilement reproductible
- Préparation gravimétrique
- Pureté des composants contrôlée

Caractérisation avec le système primaire de mesure à trois températures

Distribution du matériau à 12 laboratoires lors de l'intercomparaison SOMLIT à Brest

Mesure du pH_T du matériau de référence réalisée par spectrophotométrie par les différentes stations


Traitement des résultats

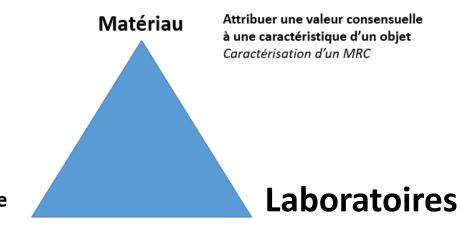
Cette étude constitue une comparaison interlaboratoires sur le matériau de référence par la méthode spectrophotométrique de mesure de pH_T

Del Valls & Dickson (1998); Pratt (2014); Müller, et.al (2018)

LES TYPES DE COMPARAISONS INTERLABORATOIRES

Attribuer une valeur consensuelle à une caractéristique d'un objet Caractérisation d'un MRC

Méthode


Estimer l'exactitude (justesse et fidélité) d'une méthode
Une même méthode est testée :
infos sur la répétabilité,
reproductibilité et justesse

Laboratoires

Evaluer les performances des laboratoires – essais d'aptitude Méthodes utilisées en routine

LES TYPES DE COMPARAISONS INTERLABORATOIRES

Méthode

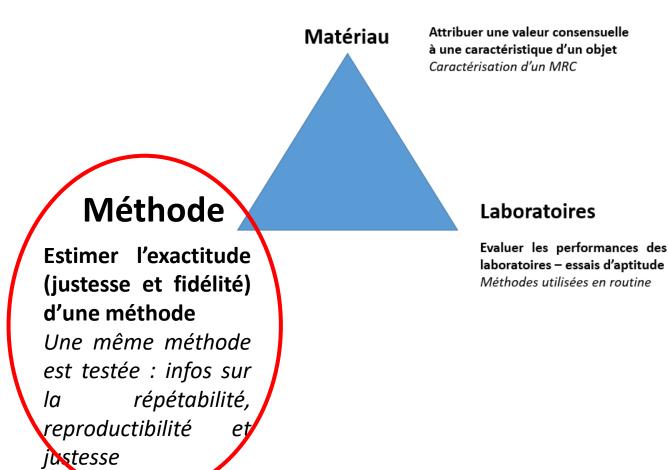
Estimer l'exactitude (justesse et fidélité) d'une méthode Une même méthode est testée : infos sur la répétabilité, reproductibilité et justesse

Evaluer les
performances des
laboratoires –
essais d'aptitude
Méthodes utilisées
en routine

<u>Traitement statistique</u>:

Z-score

$$z = (x - X) / S_p$$

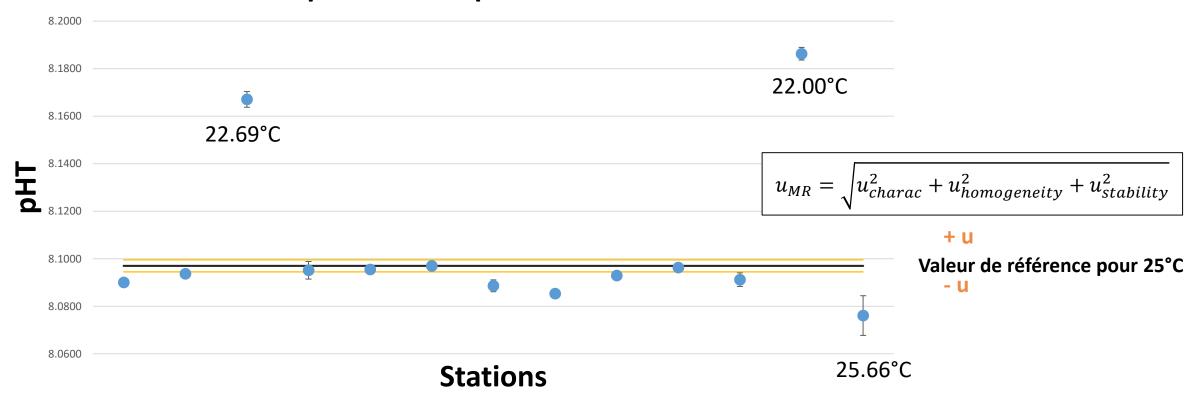

|z-score| ≤ 2,0 est considéré comme acceptable

- Evaluation des performances
- Actions correctives
- Evaluation des résultats dans le temps

LES TYPES DE COMPARAISONS INTERLABORATOIRES

- Méthode de mesure et traitement des résultats harmonisés
- Informations sur:

31/03/2022


- La reproductibilité (12 laboratoires)
- La répétabilité (3-4 mesures par laboratoire)
- La **justesse** (biais par rapport à la valeur de référence du matériau)

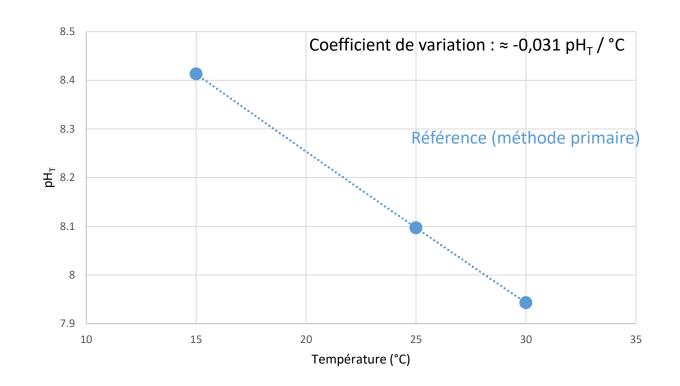
Intérêt d'avoir une valeur de référence

RÉSULTATS BRUTS DE LA COMPARAISON

Valeurs de pHT à la température de mesure

Températures de mesure différentes

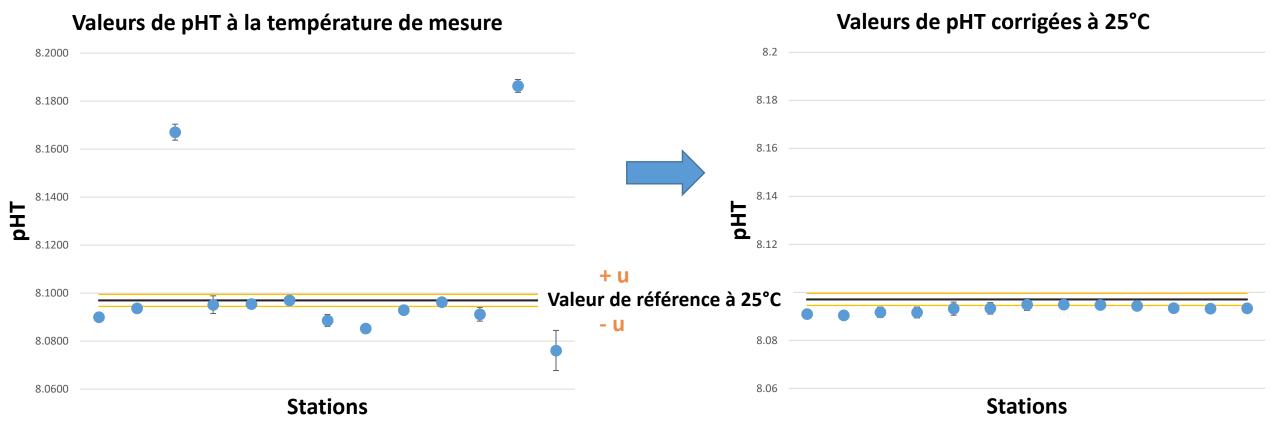
→ pas exactement le même protocole a été mis en place par tous les participants


MÉTHODE DE CORRECTION DES MESURES À 25°C

pH_T mesuré par spectrophotométrie ramené à 25°C

Caractérisation à plusieurs températures :

Relation entre la température et le pH_T


 \rightarrow Permet de ramener toutes les valeurs de pH_T à 25°C et donc de les comparer

31/03/2022

RÉSULTATS CORRIGÉS À 25°C

→ Le traitement statistique des résultats nécessite une étape de correction pour ramener les valeurs de pHT mesurées à la même température

31/03/2022

ESTIMATION PRÉLIMINAIRE DES INCERTITUDES DE LA MÉTHODE SPECTROPHOTOMÉTRIQUE

A partir des données du réseau SOMLIT sur le MR (les 12 stations) : première estimation d'un bilan d'incertitude selon la norme **ISO 21748**

Lignes directrices relatives à l'utilisation d'estimations de la répétabilité, de la reproductibilité et de la justesse dans l'évaluation de l'incertitude de mesure

- Incertitude liée au biais de justesse :

$$\hat{\delta} = x_{ILC} - x_{ref} = -0.0044$$

 $u(\hat{\delta}) = 0.0035$

- <u>Incertitudes liées à la répétabilité et à la reproductibilité</u> :

$$s_R = 0.0037$$

→ Incertitude intrinsèque à la méthode
 → u méthode > 0.0037

$$u = \sqrt{u^2(\hat{\delta}) + s_R^2} = 0.0051$$

$$U = 0.0102$$

CONCLUSIONS

- La participation à des CIL permet :
 - D'estimer l'exactitude d'une méthode
 - D'évaluer les performances d'un laboratoire

Il est nécessaire :

- De bien définir le but de la comparaison (protocole à mettre en place) et le traitement statistique à appliquer
- D'avoir une valeur de référence pour l'évaluation de la justesse
- Objectif de qualité des données pour la mesure du pH_T :

- EOV GOOS: ± 0.005

 $- GOA-ON : \pm 0.003 (k=1)$

L'incertitude de la méthode est au minimum de 0.004 (k=1)

→ Besoin d'évaluer les autres sources d'incertitudes

L'écart-type de répétabilité n'est pas une évaluation d'incertitude

