

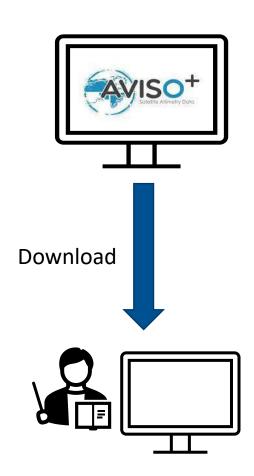
Contents

- 1. Context and introduction
- 2. The AVISO offer to SWOT users
- 3. Understanding your needs

Contents

- 1. Context and introduction
- 2. The AVISO offer to SWOT users
- 3. Understanding your needs

SWOT LR KaRIn ocean products


Product	Grid	Volume		Availability
		/day	/year	
L1B_LR_INTF	KaRIn Metering Structure Frame (KMSF)	1 TB	365 TB	HPC CNES (on demand)
L2_LR_SSH Basic	2 km geographically fixed along-track grid	1 GB	365 GB	HPC CNES / PODAAC / AVISO
L2_LR_SSH WindWave	2 km geographically fixed along-track grid	1 GB	365 GB	HPC CNES / PODAAC / AVISO
L2_LR_SSH Expert	2 km geographically fixed along-track grid	3 GB	1 TB	HPC CNES / PODAAC / AVISO
L2_LR_SSH Unsmoothed	~250 m native (center-beam) along-track grid	40 GB	15 TB	HPC CNES / PODAAC / AVISO
L3 KaRIn	2 km geographically fixed along-track grid	200 MB	73 GB	HPC CNES / AVISO
L4 KaRIn	Regular 2D-grid 1/8°	<100 MB	<36 GB	HPC CNES / AVISO

Classical data access (download + local work)

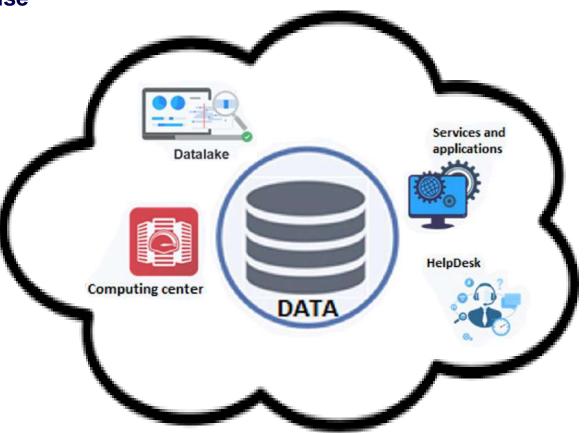
AVISO offers the following

- Data is available on AVISO: L2 (2km and 250m), L3 and L4
- Support on products format, content and algorithms
- Opentoolbox for collaborative work on swath [NEW]
 - ✓ Download AVISO / PODAAC / Copernicus ...
 - ✓ Extraction
 - ✓ Statistics
 - ✓ Diagnostics : derivatives, currents, strain, vorticity
- Visualization via SeeWater Aviso+ [NEW]

Process-centric : bring the data to the algorithm

New form of data access (working remotely in the cloud)

AVISO offers the following


- Free hosting of ST Projects on CNES infrastructure in **Toulouse**

High processing power connected to data

Integrated SWOT data, tools and dedicated support

External data for your research (e.g. Copernicus)

Data-centric: bring the algorithm to the data

Local VS Remote: pros and cons

Medium

Light

	Criteria	CNES cloud	Local work
Invest time	Work method		
	Project setting up		
	Cost		
	Computation power		
	Access to SWOT data		
Save time	Multi-mission & multi-temporal analysis		
	SWOT dedicated tools		
	Software support		
Investment needed	Contact with SWOT experts		
Big			

Contents

- 1. Context and introduction
- 2. The AVISO offer to SWOT users
- 3. Understanding your needs

Simplified HPC architecture

Processing power

Interactive sessions

Small: 1 core – 8 GB RAM Medium: 4 cores – 32 GB RAM

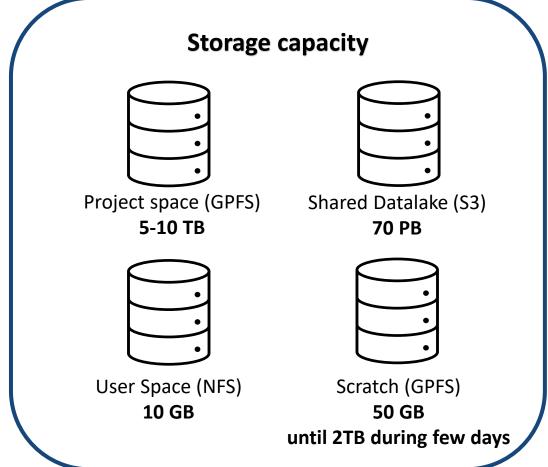
Large: 8 cores – 64 GB RAM XLarge: 16 cores – 128 GB RAM

Batch nodes CPU

16 000 cores – 115 TB RAM

Batch nodes

GPU


48 GPU (A100, A300, V100)

CPU: Central Processing Unit

Cheap and computations historically done on this hardware

GPU: Graphical Processing Unit

Used for machine learning, interpolation... but expensive

GPFS: General Parallel File System

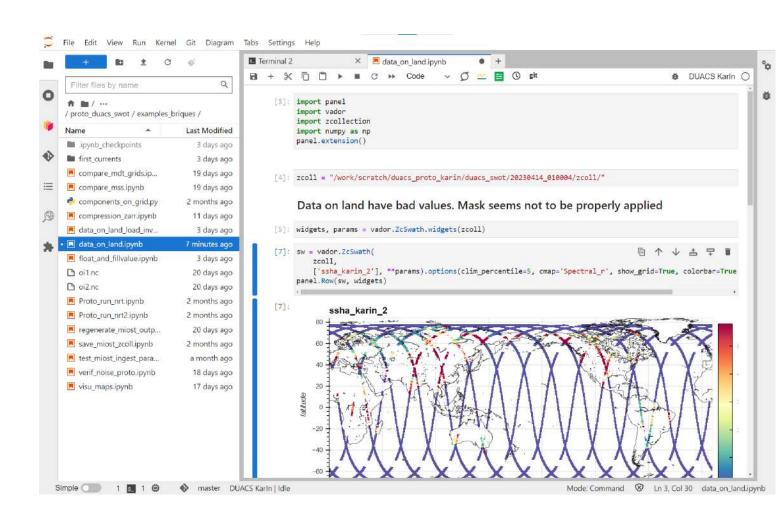
High performance file system made for distributed architectures

S3: Simple Service Storage

Optimized for availability and scalability

Work methods to work on CNES cluster

JupyterLab


https://jupyterhub.cnes.fr/

Access to a set of tools:

- Complete access through a web browser
- File explorer
- Python Notebooks to work on SWOT data
- Examples notebooks and tutorials dedicated to SWOT data
- Documentation

More information:

https://www.dataquest.io/blog/jupyter-notebook-tutorial/
https://jupyter-notebook.readthedocs.io/en/latest/notebook.html

Other methods to work on CNES cluster

Remote desktop

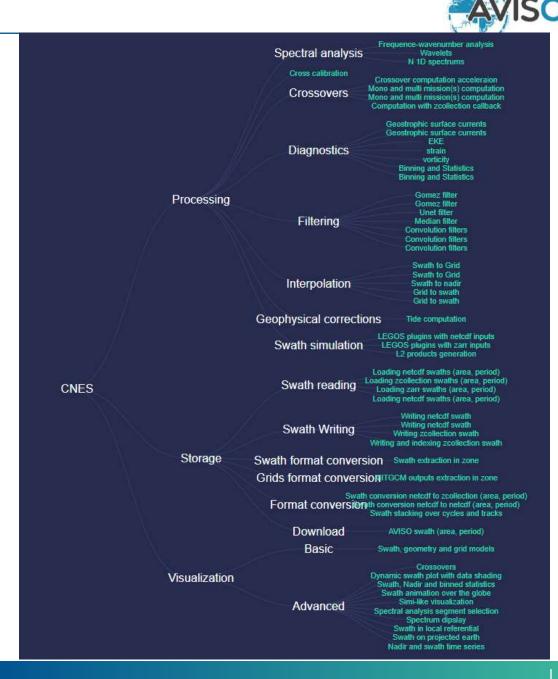
Very simple access:

https://jupyterhub.cnes.fr/user/login/desktop/vnc.html/

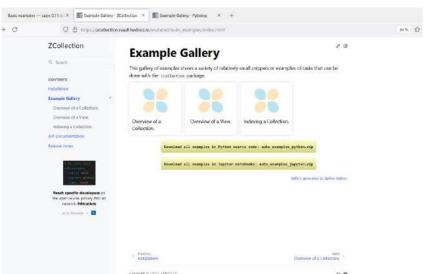
Command line

ssh -Y login@hal.cnes.fr

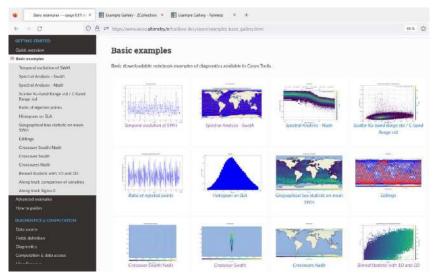
IDE - VSCode


Tools – Libraries and use cases

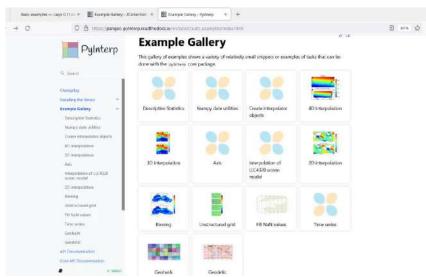
Python PANGEO Stack : <u>pangeo.io</u> (research-oriented python environment)


SWOT-specific additions to the PANGEO stack

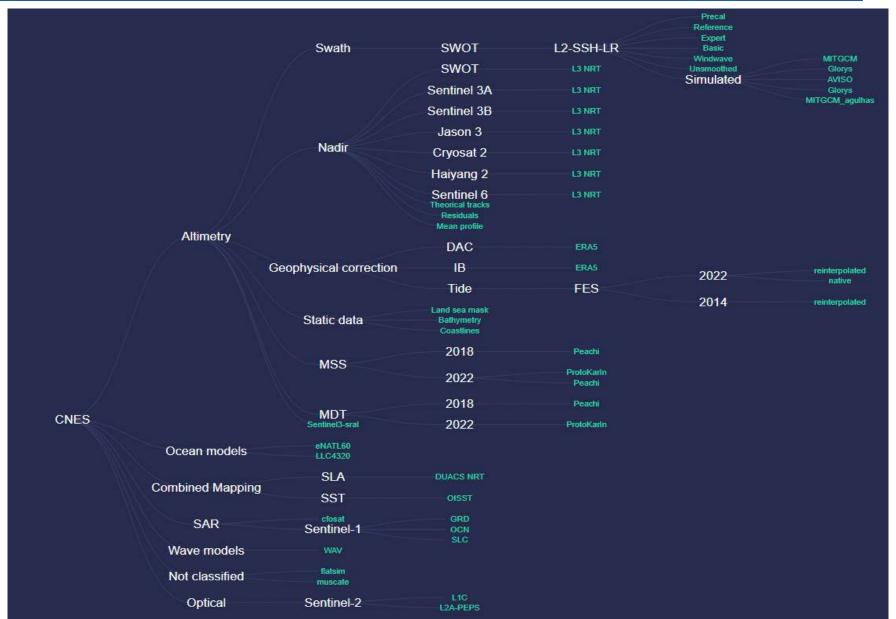
- Zcollection
- Swot Calval
- Pyinterp
- Casys
- Vador
- Ocean tools



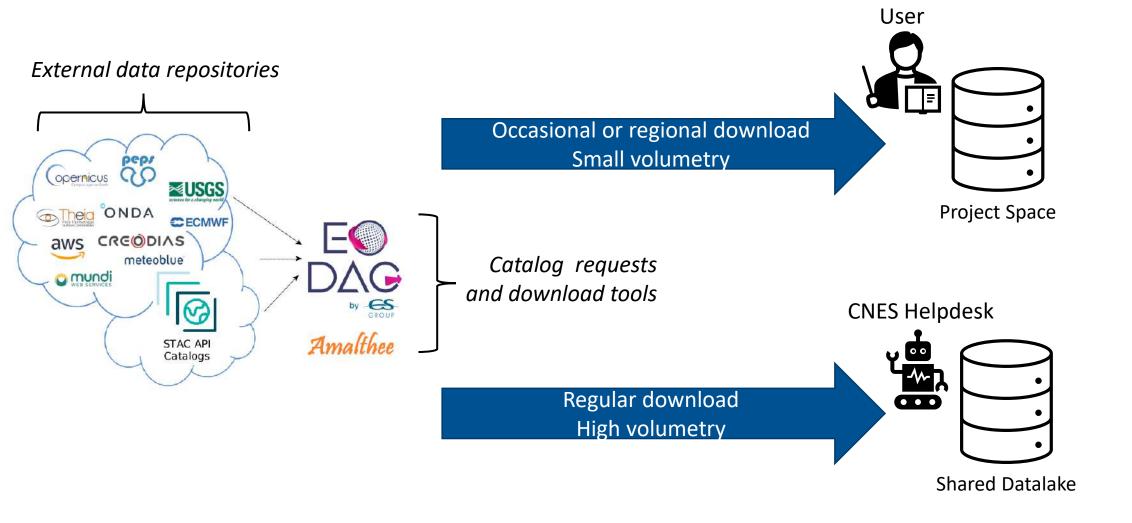
Tools – A lot of use case examples available



https://zcollection.readthedocs.io/en/latest/auto_examples/index.html


https://www.aviso.altimetry.fr/toolbox-doc/casys/examples basic gallery.html

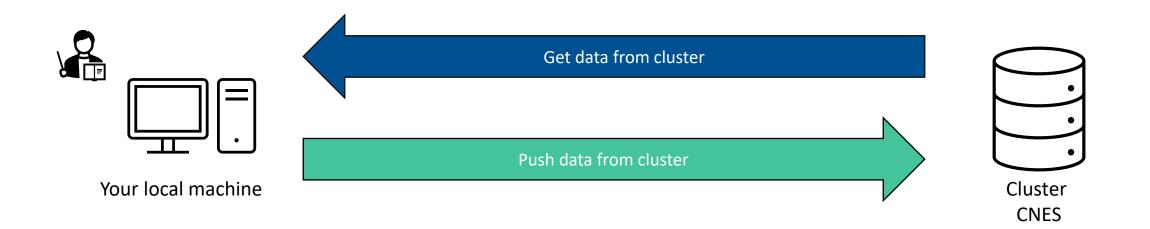
https://pangeo-pyinterp.readthedocs.io/en/latest/auto_examples/index.html

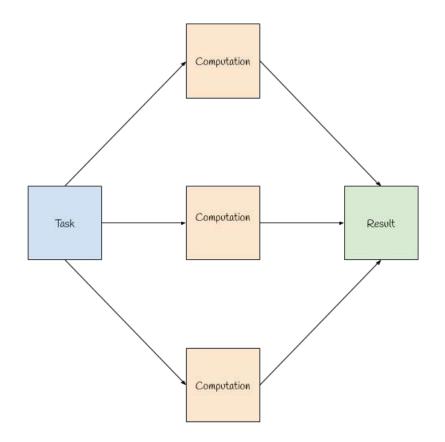

Data already on the CNES cloud

External data retrieval - Data from other catalogs

External data retrieval – what about your own data?

Supported protocols: SCP, SFTP





Exploiting cloud capabilities: parallel computing made simple

Parallel computing available with a few lines of python (or even implicitly)


```
import xarray as xr

data = "/path/to/data"

ds = xr.open_mfdataset(data, combine="nested", concat_dim="time")

ds.mean("time").compute()
```

A fair number of Python libraries have partial or total integration of the underlying parallelization framework :

```
import xarray as xr
import dask_jobqueue

# Launching the cluster
cluster = dask_jobqueue.PBSCluster(
    cores=2, processes=8, memory="10GB",
    walltime='01:00:00', interface="ib0")
cluster.scale(1)

data = "/path/to/data"
  ds = xr.open_mfdataset(, combine="nested", concat_dim="time")
  ds.mean("time").compute()
```

Exploiting cloud capabilities: parallel I/O for fast data access

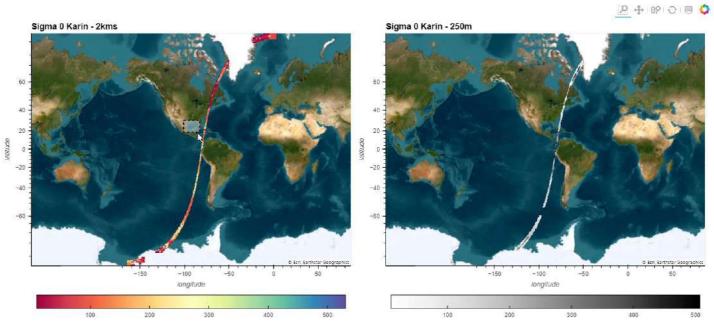
SWOT products available in their native netCDF format and in a new ZARR format (parallel and faster data access)

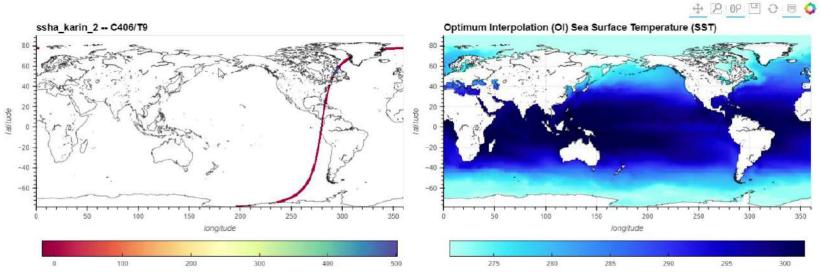
	Non-parallelized	Parallelized	
Netcdf	90 m	33 m	
Zarr	2 m 15 s	1 m 20 s	

Mean over >10 000 netcdf

```
import xarray as xr
data = "/path/to/netcdf"
ds = xr.open_mfdataset(data, combine="nested", concat_dim="time")
ds.mean("time").compute()
```

Mean over a zarr store


```
import xarray as xr
data = "/path/to/zarr"
ds = xr.open_zarr(data)
ds.mean("time").compute()
```


Mean over a zcollection

```
import swot_calval.io
data = "/path/to/zcollection"
zc = swot_calval.io.open_collection(data)
zds = zc.query()
ds = zds.to_xarray()
ds.mean("time").compute()
```

Fast interactive data visualization

SWOT HelpDesk - we are here to help you

Getting started

- Cluster working methods
- HPC training
- Tools upskilling
- SWOT data training
- Documentation, examples and tutorials

Work on your project

- HPC support
- Code optimisation
- FAQ & HelpDesk

Demonstration

• Experiments on

simulated data

CNES cloud access request

Project set up

- Project's workspace creation
- Accounts creation
- ACL (Access Control List) management
- Data retrieval
- Code installation / coding environment installation

Helpdesk Service mutation

- Export or archive your codes and data
- Support will keep helping you during this phase
- Nothing is lost!

Contents

- 1. Context and introduction
- 2. The AVISO offer to SWOT users
- 3. Understanding your needs

Which SWOT products? type, region, period...
Which kind of external data? sensor type, region, supplier...
What kind of tools? SWOT specific, cloud-specific, generic...
What kind of hardware resources? Cpu, disk

Does the AVISO offer make sense for <u>you</u>? How can we make it better for you?

Summary

What we can do for you

- Give access to processing power
- Take care of setting up an efficient coding environment
- Explore the SWOT ocean swath with few line of codes
- Decrease the time you spend developing SWOT-adapted tools
- Accompany you during the important steps of your project

Contact

rchevrier@groupcls.com

atonneau@groupcls.com

How to apply

Send a mail with a short project description to our contact mail